With more customers utilizing on the online review surveys to educate their administration basic leadership, assessment of reviews which economically affect the reality of organizations. Obviously, crafty people or gatherings have endeavored to manhandle or control online review spam to make benefits, etc, and that tricky recognition and counterfeit sentiment surveys is a subject of continuous research intrigue. In this paper, we clarify how supervised learning strategies are utilized to recognize online spam review surveys, preceding showing its utility utilizing an informational index of lodging reviews
In present times, unmanned aerial vehicles (UAVs) are widely employed in several real time applications due to their autonomous, inexpensive, and compact nature. Aerial image classification in UAVs has gained significant interest in surveillance systems that assist object detection and tracking processes. The advent of deep learning (DL) models paves a way to design effective aerial image classification techniques in UAV networks. In this view, this paper presents a novel optimal Squeezenet with a deep neural network (OSQN-DNN) model for aerial image classification in UAV networks. The proposed OSQN-DNN model initially enables the UAVs to capture images using the inbuilt imaging sensors. Besides, the OSQN model is applied as a feature extractor to derive a useful set of feature vectors where the coyote optimization algorithm (COA) is employed to optimally choose the hyperparameters involved in the classical SqueezeNet model. Moreover, the DNN model is utilized as a classifier that aims to allocate proper class labels to the applied input aerial images. Furthermore, the usage of COA for hyperparameter tuning of the SqueezeNet model helps to considerably boost the overall classification performance. For examining the enhanced aerial image classification performance of the OSQN-DNN model, a series of experiments were performed on the benchmark UCM dataset. The experimental results pointed out that the OSQN-DNN model has resulted in a maximum accuracy of 98.97% and a minimum running time of 1.26mts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.