Quantum computers are close to become a practical technology. Solid-state implementations based, for example, on superconducting devices strongly rely on the quality of the constituent materials. In this work, we fabricate and characterize superconducting planar resonators in the microwave range, made from aluminum films on silicon substrates. We study two samples, one of which is unprocessed and the other cleaned with a hydrofluoric acid bath and by heating at 880 in high vacuum. We verify the efficacy of the cleaning treatment by means of scanning transmission electron microscope imaging of samples' cross sections. From 3 -long resonator measurements at 10 and with 10 photonic excitations, we estimate the frequency flicker noise level using the Allan deviation and find an approximately tenfold noise reduction between the two samples; the cleaned sample shows a flicker noise power coefficient for the fractional frequency of 0.23 10 15 . Our preliminary results follow the generalized tunneling model for two-level state defects in amorphous dielectric materials and show that suitable cleaning treatments can help the operation of superconducting quantum computers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.