[1] The new Horizontal Wind Model (HWM07) provides a statistical representation of the horizontal wind fields of the Earth's atmosphere from the ground to the exosphere (0-500 km). It represents over 50 years of satellite, rocket, and ground-based wind measurements via a compact Fortran 90 subroutine. The computer model is a function of geographic location, altitude, day of the year, solar local time, and geomagnetic activity. It includes representations of the zonal mean circulation, stationary planetary waves, migrating tides, and the seasonal modulation thereof. HWM07 is composed of two components, a quiet time component for the background state described in this paper and a geomagnetic storm time component (DWM07) described in a companion paper.
We have used the Goddard High Resolution Spectrograph on board the Hubble Space T elescope to obtain Lya spectra of the hot white dwarf (WD) component of the short-period eclipsing DA]dK2 precataclysmic binary V471 Tauri, a member of the Hyades star cluster. Radial velocities of the WD were determined from eight post-COSTAR spectra obtained near the two quadratures of the orbit. When combined with ground-based measurements of the dK velocities, eclipse timings, and a determination of the dK starÏs rotational velocity, the data constrain the orbital inclination to be i \ 77¡ and yield dynamical masses for the components of and Model atmosphere M WD \ 0.84 M dK \ 0.93 M _ . Ðtting of the Lya proÐle provides the e †ective temperature (34,500 K) and surface gravity (log g \ 8.3) of the WD. The radius of the dK component is about 18% larger than that of a normal Hyades dwarf of the same mass. This expansion is attributed to the large degree of coverage of the stellar surface by starspots, which is indicated by both radiometric measurements and ground-based Doppler imaging ; in response, the star has expanded in order to maintain the luminosity of a 0.93 dwarf. The radius of M _ the WD, determined from a radiometric analysis and from eclipse ingress timings, is 0.0107 The R _ . position of the star in the mass-radius plane is in full accord with theoretical predictions for a degenerate carbon-oxygen WD with a surface temperature equal to that observed. The position of the WD in the H-R diagram is also fully consistent with that expected for a WD with our dynamically measured mass. Both comparisons with theory are probably the most stringent yet made for any WD. The theoretical cooling age of the WD is 107 yr. The high e †ective temperature and high mass of the WD present an evolutionary paradox. The WD is the most massive one known in the Hyades but also the hottest and youngest, in direct conÑict with expectation. We examine possible resolutions of the paradox, including the possibility of a nova outburst in the recent past, but conclude that the most likely explanation is that the WD is indeed very young and is descended from a blue straggler. A plausible scenario is that the progenitor system was a triple, with a close inner pair of main-sequence stars whose masses were both similar to that of the present cluster turno †. These stars became an Algol-type binary, which merged after several hundred million years to produce a single blue straggler of about twice the turno † mass. When this star evolved to the asymptotic giant branch phase, it underwent a common envelope interaction with a distant dK companion, which spiraled down to its present separation, and ejected the envelope. We estimate that the common envelope efficiency parameter was on the order of 0.3È1.0, in a CE good agreement with recent hydrodynamical simulations.
Abstract. The pulsating PG 1159 planetary nebula central star RXJ 2117+3412 has been observed over three successive seasons of a multisite photometric campaign. The asteroseismological analysis of the data, based on the 37 identified = 1 modes among the 48 independent pulsation frequencies detected in the power spectrum, leads to the derivation of the rotational splitting, the period spacing and the mode trapping cycle and amplitude, from which a number of fundamental parameters can be deduced. The average rotation period is 1.16 ± 0.05 days. The trend for the rotational splitting to decrease with increasing periods is incompatible with a solid body rotation. The total mass is 0.56 pc. At such a distance, the linear size of the planetary nebulae is 2.9 ± 0.9 pc. The role of mass loss on the excitation mechanism and its consequence on the amplitude variations is discussed.
Abstract. BPM 37093 is the only hydrogen-atmosphere white dwarf currently known which has sufficient mass (∼1.1 M ) to theoretically crystallize while still inside the ZZ Ceti instability strip (T eff ∼ 12 000 K). As a consequence, this star represents our first opportunity to test crystallization theory directly. If the core is substantially crystallized, then the inner boundary for each pulsation mode will be located at the top of the solid core rather than at the center of the star, affecting mainly the average period spacing. This is distinct from the "mode trapping" caused by the stratified surface layers, which modifies the pulsation periods more selectively. In this paper we report on Whole Earth Telescope observations of BPM 37093 obtained in 1998 and 1999. Based on a simple analysis of the average period spacing we conclude that a large fraction of the total stellar mass is likely to be crystallized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.