Polycystin-1 is a novel protein predicted to be a large membrane-spanning glycoprotein with an extracellular N-terminus and an intracellular C-terminus, harboring several structural motifs. To study the subcellular localization, antibodies raised against various domains of polycystin-1 and against specific adhesion complex proteins were used for two-color immunofluorescence staining. In Madine Darby canine kidney (MDCK) cells, polycystin-1 was detected in the cytoplasm as well as co-localizing with desmosomes, but not with tight or adherens junctions. Using confocal laser scanning and immunoelectron microscopy we confirmed the desmosomal localization. By performing a calcium switch experiment, we demonstrated the sequential reassembly of tight junctions, subsequently adherens junctions and finally desmosomes. Polycystin-1 only stained the membrane after incorporation of desmoplakin into the desmosomes, suggesting that membrane-bound polycystin-1 may be important for cellular signaling or cell adhesion, but not for the assembly of adhesion complexes.
Polycystin-2 is a predicted integral membrane protein with non-selective cation channel activity. The protein is encoded by the PKD2 gene, which is mutated in approximately 15% of patients with autosomal dominant polycystic kidney disease (ADPKD). Polycystin-2 can interact with the transmembrane protein polycystin-1, the product of the PKD1 gene. However, endoplasmic reticulum (ER) localization was reported for (heterologously expressed) polycystin-2 in cultured cells and baso-lateral localization has been reported in renal tissues. Using two polyclonal antisera raised against polycystin-2 we demonstrated distinct expression of the endogenous protein in the Golgi apparatus and the plasma membrane of MDCK cells. In contrast, most of the heterologously expressed polycystin-2 (PC2-EGFP) remained in the ER, substantially overlapping with the staining pattern of protein-disulfide isomerase (PDI), a marker for the ER. Only in a small subset of these cells weak plasma membrane signals were observed. Membrane staining was also suggested by immunoelectron microscopy and was confirmed by subcellular fractionation on sucrose density gradients. The plasma membrane staining disappeared following extraction with a buffer containing Triton X-100, whereas signals for polycystin-1 and E-cadherin remained visible, suggesting that polycystin-2 is neither tightly bound to the Triton X-100 insoluble cytoskeleton, nor to these proteins. We conclude that endogenous polycystin-2 is transported via the Golgi apparatus to the plasma membrane and has a broader membrane localization than polycystin-1. These data suggest that polycystin-2 can move freely in certain regions of the membrane where it probably functions as a channel, activated by, or in complex with, polycystin-1.
Echocardiography is a very useful non-invasive method of cardiac diagnosis. It has been widely used in evaluating the effects of some drugs, such as nitrates, prazosin, and propranolol, on heart and seems very successful. In this paper, the echocardiographic studies of the effects of nitrates on left ventricular dimension and volume have been reviewed and an attempt has been made to answer whether or not echocardiography can allow to monitor the effects of nitrates in patient groups and further in individual patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.