Using the method of equal-channel angular pressing (ECAP), submicrocrystalline structure is formed in lowcarbon Fe-Mn-V-Ti-C steel with the average grain size 260 nm in the ferrite-perlite state and 310 nm in the martensitic state. It is established that the ECAP treatment gives rise to improved mechanical properties (H µ = 2.9 GPa, σ 0 = 990 MPa in the ferrite-perlite and H µ = 3.7 GPa, σ 0 = 1125 MPa in martensitic states), decreased plasticity, and results in plastic flow localization under tensile loading. The high strength properties formed by the ECAP are shown to sustain up to the annealing temperature 500°С.
In this paper, we investigate the microstructure and microhardness of high-nitrogen austenitic steel after high-pressure upset and high-pressure torsion (6 GPa) at room temperature. As the result of deformation, steel microhardness increases by 1.5 times after high-pressure torsion per one revolution while the distribution of microhardness is quasi-homogeneous across the disks. The level of solid solution hardening of steel remains high after deformation processing, and the main mechanisms determining fragmentation of the steel structure are slip, twinning, formation of localized deformation microbands, and precipitation hardening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.