Aluminium alloys are used in spacecraft and aerospace industries because of their unique properties which are lightweight and high strength. The components of aluminium alloys used in aerospace and space environment are subjected to relative motion which results in the tribo-phenomenon. The designer needs tribo response data for designing components geometrical dimensions. The literature reports inadequate tribo response data, more particularly in a vacuum environment (adverse environment). In the present investigation, experiments were conducted using Al 6061 aluminium alloy pins with different diameters. The cylindrical pin diameters were 2mm, 4mm and 6 mm. The cylindrical pins were slid against a hardened En-8 steel disc. The normal pressure was maintained at 0.625 MPa and the sliding speed was 0.5 ms-1. The estimated friction coefficient from monitored frictional force and normal force and the dependency of estimated friction coefficient on sliding distance for cylindrical pins of different diameters were analysed.
Objective: Aluminium and its alloys components are used in aero and space industries where in many cases trioboloading prevails. In space application, in addition to triboloading, the components should also perform in the absence of atmosphere. In the present investigation, attempted has been made to simulate the field conditions in the laboratory by sliding Al6061 alloy pin of different diameters in a vacuum at different temperatures using a vertically configured pin-on-disc test rig. Method: The pin diameters were 2, 4, and 6mm and the testing temperatures were 373, 473, and 573K. The normal contact pressure was 0.625MPa and the sliding speed was 0.5ms-1 and both were constant throughout the experiment. The coefficient of friction was monitored using a PC and the worn pin surface was studied in scanning-electronmicroscope. Findings: The result showed that the coefficient of friction at sliding temperatures 373 and 473K was found to be dependent on apparent contact area i.e., pin diameters 2, 4, and 6mm. The coefficient of friction was found to be 3.27 and 2.69 for pin diameter 2mm at temperature 373 and 473K whereas the coefficient of friction was of the range 1.36 to 0.33 for the pin of diameter 4 and 6mm. The scanning-electron-microscopic study revealed uniform plastic deformation for pin diameter of 2mm and non-uniform plastic deformation accompanied with abrasion extrusion phenomenon for the pin of diameters 4 and 6mm. The coefficient of friction at sliding temperature 573K was found to be insensitive to the apparent contact area. The coefficient of friction was in the range of 1.24 to 2.30. The SEM study revealed a large scale of non-uniform plastic deformation accompanied by abrasion, tearing of ridges, extrusion of both ridges, and entrapped wear debris. Novelty: It is a generic study for understanding the response of aluminium for tribo loading which.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.