Among the potential tools in digital marketing, Search Engine Optimization (SEO) facilitates the use of appropriate data by providing appropriate results according to the search priority of the user. Various research-based approaches have been developed to improve the optimization performance of search engines over the past decade; however, it is still unclear what the strengths and weaknesses of these methods are. As a result of the increased proliferation of Machine Learning (ML) and Natural Language Processing (NLP) in complex content management, there is potential to achieve successful SEO results. Therefore, the purpose of this paper is to contribute towards performing an exhaustive study on the respective NLP and ML methodologies to explore their strengths and weaknesses. Additionally, the paper highlights distinct learning outcomes and a specific research gap intended to assist future research work with a guideline necessary for optimizing search engine performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.