When a heavy atomic nucleus splits (fission), the resulting fragments are observed to emerge spinning 1 ; this phenomenon has been a mystery in nuclear physics for over 40 years 2,3 . The internal generation of six or seven units of angular momentum in each fragment is particularly puzzling for systems that start with zero, or almost zero, spin. There are currently no experimental observations that enable decisive discrimination between the many competing theories for the mechanism that generates the angular momentum [4][5][6][7][8][9][10][11][12] . Nevertheless, the consensus is that excitation of collective vibrational modes generates the intrinsic spin before the nucleus splits (pre-scission). Here we show that there is no significant correlation between the spins of the fragment partners, which leads us to conclude that angular momentum in fission is actually generated after the nucleus splits (post-scission). We present comprehensive data showing that the average spin is strongly mass-dependent, varying in saw-tooth distributions. We observe no notable dependence of fragment spin on the mass or charge of the partner nucleus, confirming the uncorrelated post-scission nature of the spin mechanism. To explain these observations, we propose that the collective motion of nucleons in the ruptured neck of the fissioning system generates two independent torques, analogous to the snapping of an elastic band. A parameterization based on occupation of angular momentum states according to statistical theory describes the full range of experimental data well. This insight into the role of spin in nuclear fission is not only important for the fundamental understanding and theoretical description of fission, but also has consequences for the γ-ray heating problem in nuclear reactors 13,14 , for the study of the structure of neutron-rich isotopes 15,16 , and for the synthesis and stability of super-heavy elements 17,18 .
Excited states in 102Rh, populated in the fusion-evaporation reaction Zr94(11B,3n)102Rh at a beam energy of 36 MeV, were studied using the Indian National Gamma Array spectrometer at Inter University Accelerator Center, New Delhi. The angular correlations and the electromagnetic character of some of the gamma-ray transitions observed were investigated in detail. A new chiral candidate sister band was found. Lifetimes of exited states in both chiral candidate bands of 102Rh were measured for the first time in the A∼100 mass region by means of the Doppler-shift attenuation technique. The derived reduced transition probabilities are compared to the predictions of the two quasiparticles plus triaxial rotor model. Both experimental results and calculations do not support the presence of static chirality in 102Rh.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.