This paper presents the results of experimental and numerical investigations of cooling effectiveness of the film cooled turbine nozzle. The nozzle is with two internal cavities. Front cavity of the nozzle is fed with high pressure cooling air from compressor diffuser with minimal losses of pressure for ensuring film cooling of the leading edge. Rear cavity is with impingement tube for high effective convective cooling. Experimental measurements of cooling flow capacity and cooling effectiveness were carried out on experimental facility of OSC “NPO CKTI”. Investigations included isothermal internal flow tests and hot tests with internal flow and metal temperature measurements. Test results were compared with flow and thermal field CFD predictions. Temperature fields of body and platforms of nozzle were predicted by conjugate heat transfer simulation. Computation domain includes vane-to-vane path flow, vane solid body with shrouds and holes for cooling air injection. Heat transfer conditions inside vane were calculated with one dimension internal flow model. Isothermal internal flow test results were used to validate one dimension internal flow model. Comparison of the experimental and simulation results enabled to modify calculation models to obtain good agreement. Turbine vane temperature fields calculations in different operation conditions were carried out with validated numerical models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.