Gene effects of resistance to two isolates of Phytophthora nicotianae in two crosses of pepper were investigated using separate generation means analysis. Additive-dominance models were inadequate in all cases. Digenic parameter models were adequate in three cases and the probability of goodness of fit of models was negatively correlated with the aggressiveness of the pathogen. None of these models explained variation among generation means in the combined cross Beldi 9 CM334 with P. nicotianae isolate Pn 2. Additive 9 additive, dominance 9 dominance and dominance 9 additive effects were significant in most cases. Additive and dominance effects (of negative sign) contribute more to resistance than to susceptibility. Additive variance was greater than environmental and dominance variance and ranged from 0.038 to 0.224. Narrow-sense heritabilities were dependent upon the cross and inoculate and ranged from 86 to 92%. The results of this study indicate that selection with more aggressive isolates of the pathogen will be useful for enhancing resistance in pepper.
Parental, F 1 , reciprocal F 1 (RF 1 ), F 2 , reciprocal F 2 (RF 2 ), BC 1 P 1 and BC 1 P 2 generations of four crosses involving four cultivars of durum wheat (Triticum durum Desf.) were evaluated for grain resistance to yellowberry. Significant differences were reported for F 1 , F 2 and their reciprocals in all crosses. A generation means analysis indicated the inadequacy of additive-dominance model and additive-dominance model considering maternal effects. However, the variation in generation means in the four crosses could be explained by a digenic epistatic model with cytoplasmic effects. Cytoplasmic effects were significant and consistent in all the crosses. Dominance effects and additive × dominance epistasis were more important than additive effects and other epistatic components. The choice of a female parent possessing grain resistance to yellowberry appeared to be decisive in durum wheat breeding for resistance to this serious seed disorder.
This study evaluated the types of gene action governing the inheritance of resistance to Phytophthora nicotianae necrosis in populations derived from two crosses involving two susceptible (Beldi and Nabeul II) and one resistant (CM334) cultivars of pepper (Capsicum annuum L.). Populations, composed of Pr, Ps, F1 , F 2 , BC 1 Pr, and BC 1 Ps generations, were inoculated with six P. nicotianae isolates. Generation means analysis indicated that an additive-dominance model was appropriate for P. nicotianae isolates Pn Ko1 , Pn Ko2 and Pn Kr1 , which showed low aggressiveness in the two crosses. For the more aggressive isolates Pn Bz1 , Pn Bz2 and Pn Kr2 , epistasis was an integral component of resistance in the two crosses. The presence of epistasis in the resistance of pepper to P. nicotianae was dependent on the level of aggressiveness of the isolates. Selection in pepper with less aggressive isolates was efficient, but not with more aggressive isolates; on the other hand, selection with more aggressive isolates was more stable. The minimum number of genes controlling resistance was estimated at up to 2.71. In the majority of cases, the additive variance was significant and greater than the environmental and dominance variance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.