Crossbred steers (n = 7; 400 kg BW), fitted with T-type cannulas in the duodenum and ileum, were used to examine the effects of processing method, dry-rolled (DR) vs. steam-flaked (SF) sorghum grain, and degree of processing (flake density; FD) of SF corn (SFC) and SF sorghum (SFS) grain on site and extent of DM, starch, and N digestibilities and to measure extent of microbial N flow to the duodenum. In Exp. 1, diets contained 77% DRS or 77% SFS with FD of 437, 360, and 283 g/L (SF34, SF28, and SF22). In Exp. 2, diets contained 77% SFC with FD of SF34 or SF22. For sorghum and corn diets, respective average daily intakes were as follows: DM, 6.7 and 8.1 kg; starch, 3.8 and 4.7 kg; N, 136 and 149 g. Steers fed SFS vs. DRS increased (P = .01) starch digestibilities (percentage of intake) in the rumen (82 vs. 67%) and total tract (98.9 vs. 96.5%) and decreased digestibilities in the small intestine (16 vs. 28%; P = .01) and large intestine (.5 vs 1.2%; P = .05). As a percentage of starch entering the segment, digestibility was increased (P = .01) within the small intestine (91 vs. 85%) but was not altered within the large intestine by steers fed SFS vs. DRS. Decreasing FD of SFS and of SFC, respectively, linearly increased starch digestibilities (percentage of intake) in the rumen (P = .03, .02) and total tract (P = .03, .09) and linearly diminished starch digestibilities in the small intestine (P = .04, .09). Starch digestibilities (percentage of entry) within the small or large intestine were not changed by FD. The percentage of dietary corn or sorghum starch digested in the large intestine was very small, less than 2% of intake. Microbial N flow to the duodenum was not altered by SFS compared to DRS, or by decreasing FD of SFS and SFC. Reducing FD of SFS, but not of SFC, tended to decrease (P = .07) microbial efficiency linearly and tended to increase (P = .06) total tract N digestibilities linearly. Steam flaking compared to dry rolling of sorghum grain and decreasing FD of SFC and SFS grain consistently increased starch digestibility in the rumen and total tract of growing steers. The greatest total digestibility of dietary starch occurred when the proportion digested in the rumen was maximized and the fraction digested in the small intestine was minimized. These changes in sites of digestion account, in part, for the improved N conservation and greater hepatic output of glucose by steers fed lower FD of SFS reported in our companion papers.
Two trials were conducted to determine the influence of yucca extract on ruminal digestion, fermentation, and ammonia patterns using ruminally and duodenally cannulated dairy cows. In Trial 1, urea at 0 or 1% of the diet and yucca extract at 0 or 4 g/d formed four dietary treatments in a 2 x 2 factorial arrangement. The experimental design was a 4 x 4 Latin square with 15-d periods. Duodenal digesta were sampled every 6 h during the last 4 d of each period to determine OM and ADF digestibilities and bacterial protein synthesis in the rumen using Cr2O3 and 15N markers. Ruminal digestibilities were (percentage): OM 46.3 vs 43.0%, and ADF 35.9 vs 41.4%, with or without Deodorase. Microbial protein entering the duodenum averaged 2.7 vs 3.1 kg/d for the respective treatments. Ruminal measurements were not affected by treatment (P > .10). In Trial 2, five cows were used in a 5 x 5 Latin square with 7-d periods. Treatments were 0, 2, 4, 6, and 8 g/d of yucca extract administered via ruminal cannulas. Ruminal fluid was sampled 0, 1, 2, 4, 7, 11, 16, and 22 h after feeding during the last 2 d of each period. Average ruminal NH3 N ranged from 31.4 to 35.4 mg/dL, pH 5.99 to 6.18, and total VFA from 120 to 129 mM, and all did not differ among treatments (P > .10). Yucca extract administered at 4 g/d did not significantly affect ruminal digestibilities of OM and ADF, and up to 8 g/d did not affect ruminal NH3, pH, or VFA.
Our objectives were to measure net fluxes of free AA (FAA) and peptide-bound AA (PBAA) across portal-drained viscera, liver, splanchnic tissues, and mammary tissues, and milk AA output of lactating Holstein cows (n = 8, 86 +/- 8 d in milk). Cows were fed an alfalfa-based total mixed ration containing 40% steam-flaked (SFS) or dry-rolled (DRS) sorghum grain. The total mixed rations were offered at 12-h intervals in a crossover design. Blood samples were obtained from indwelling catheters in portal, hepatic, and mammary veins and from mesenteric or costoabdominal arteries every 2 h from each cow and diet. Intake of dry matter was 17.9 and 18.6 kg/d of the SFS and DRS diets, respectively, but dropped to 16.3 kg/d for cows fed the SFS diet in the last 3 experimental days, sampling day included. Milk and milk crude protein yields (kg/12-h sampling) were 13.85 vs. 13.25 and 0.425 vs. 0.396 for cows fed SFS or DRS, respectively, and were not affected by the considerable drop in dry matter intake of cows fed the SFS diet during the last 3 experimental days. The portal-drained visceral flux of total essential FAA was 417 and 442 g/12 h (SEM 63) in cows fed SFS and DRS, respectively. However, the portal-drained visceral flux of 7 essential PBAA out of the 9 determined was numerically greater in cows fed the SFS diet, and total essential PBAA in that treatment was 77.4 +/- 22.2 compared with 35.4 +/- 50.2 g/12 h for cows fed the DRS diet. This phenomenon was again observed in a greater total splanchnic flux (FAA + PBAA) of 462 and 371 g/12 h in SFS- and DRS-fed cows, respectively. Mammary uptake of essential AA from both pools (free and peptide bound), and recovery of essential AA in milk, was again numerically higher in SFS-fed cows. In addition to FAA, quantifying the contribution of PBAA may improve our understanding of tissue use of AA substrates, and this may ultimately lead to improved diet formulations with respect to intestinal absorption and mammary uptake of AA.
Objectives were to measure net fluxes of free (FAA) and peptide bound amino acids (AA) (PBAA) across portal-drained viscera (PDV), liver, splanchnic, and mammary tissues, and of milk AA output of lactating Holstein cows (n = 6, 109 +/- 9 d in milk) as influenced by flaking density of corn grain. Cows were fed alfalfa-based total mixed ration (TMR) containing 40% steam-flaked (SFC) or steam-rolled corn (SRC) grain. The TMR were offered at 12-h intervals in a crossover design. Six sets of blood samples were obtained from indwelling catheters in portal, hepatic, and mammary veins and mesenteric or costoabdominal arteries every 2 h from each cow and diet. Intake of dry matter (18.4 +/- 0.4 kg/d), N, and net energy for lactation were not altered by corn processing. Milk and milk crude protein yields (kg/12-h sampling) were 14.2 vs. 13.5 and 0.43 vs. 0.39 for cows fed SFC or SRC, respectively. The PDV flux of total essential FAA was greater (571.2 vs. 366.4 g/12 h, SEM 51.4) in cows fed SFC. The PDV flux of total essential PBAA was 69.3 +/- 10.8 and 51.5 +/- 13.2 g/12 h for cows fed SFC and SRC, respectively, and differed from zero, but fluxes of individual PBAA rarely differed between treatments. Liver flux of essential FAA was greater in cows fed SRC, but only the PBAA flux in cows fed SRC differed from zero. Splanchnic flux of FAA and PBAA followed the pattern of PDV flux, but variation was greater. Mammary uptake (g/12 h) of total essential FAA was greater in cows fed SFC than SRC (224.6 vs. 198.3, SEM 7.03). Mammary uptake of essential PBAA was 25.0 vs. 15.1, SEM 5.2, g/12 h for cows fed SFC or SRC, respectively, and differed from zero in half of the PBAA. Milk output of EAA was 187.8 vs 175.4, SEM 4.4 g/12 h in cows fed SFC and SRC, respectively, and output of most essential AA consistently tended to be greater in cows fed SFC. It is apparent that PBAA comprise a portion of total AA flux across PDV and are affected by grain processing. Further, this pool supplies an important component of AA taken up by the mammary gland. Quantifying the contribution of PBAA may improve diet formulation with respect to intestinal absorption and mammary uptake of AA.
Objectives were to determine net release or uptake of alpha-amino N, ammonia N, and urea N across portal-drained viscera, liver, splanchnic, and mammary tissues of lactating Holstein cows (n = 8, 86 +/- 8 d in milk) fed alfalfa hay-based total mixed rations containing 40% dry-rolled or steam-flaked sorghum grain. The total mixed rations were offered at 12-h intervals in a crossover design. Blood samples were obtained from indwelling catheters in the portal, hepatic, and mammary veins and mesenteric or costoabdominal arteries, every 2 h for each cow and diet. Steam-flaking increased in vitro rate of starch hydrolysis compared with dry-rolled sorghum (66 vs. 25%). Diet did not alter dry matter intake (18.2 +/- 0.3 kg). Daily milk yield (27.6 +/- 0.8 kg), efficiency of production, and most milk components did not differ between diets, but fat yield was reduced (0.86 vs. 0.91 kg/d) by steam-flaked sorghum, and lactose concentration was increased (4.99 vs. 4.82%). Blood flows in portal and hepatic veins did not differ between diets. Steam-flaking tended to increase urea N cycling to the gut (162 vs. 95 g/d) compared with dry-rolling of sorghum, whereas net absorption of ammonia N and alpha-amino N across portal-drained viscera were decreased. Net mammary uptake of a-amino N increased more than 20% (83 vs. 67 g/d), resulting in a higher mammary extraction ratio (15 vs. 11%) for steam-flaked versus dry-rolled sorghum. Flaking of sorghum improved the efficiency of postabsorptive N metabolism by increasing urea N cycled to the gut and alpha-amino N uptake by the mammary gland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.