Dendroglaciological analysis of supraglacial trees represents an example of applied dendro- geomorphological methods in reconstructing glacier variations. Supraglacial trees react to glacier ice and debris movement, assuming typical shapes with modified radial growth. In this paper, based on treering analysis of Larix decidua Mill., we investigate the relationship between the distribution and growth of trees located on the most famous and representative debris-covered glacier in the Italian Alps (Miage glacier, Valle d’Aosta) and the superficial movements of ice and debris in the lower part of the tongue. Different growth anomalies (e.g. pointer years, compression wood, abrupt growth changes) were identified and dated. Three reference tree-ring chronologies based on undisturbed larches growing outside the glacier were constructed for comparison with tree-ring data from supraglacial trees. The oldest sampled trees colonized the glacier surface just before 1960. The simultaneous presence of different disturbance indicators occurred mainly between 1984 and 1990 on the southern lobe and during the period 1989–93 on the northern glacier lobe. These results fit with glaciological data documenting volume and surface-level variations in the same period.
Dendroclimatology of Cupressus dupreziana, the Tassili cypress, has been attempted on samples obtained from the door beams of the old cities of Ghat and Barkat located at the foot of the Tassili, where the cypress still lives. The tree rings of 20 samples were measured and dated by 24 AMS 14C dates. A mean ring-width chronology has thus been obtained, spanning, though discontinuously, 5220 to 100 14C BP (5990-65 cal. BP). As the tree-ring width in dry lands depends mainly on water availability, the mean ring-width chronology represents a detailed record of changes in rainfall on a decade scale for the middle and late Holocene of the central Sahara. It indicates main drought spells at 5200-5000 14C BP (5900-5760 cal. BP) and at 4350 BP (5120 cal. BP), followed by phases of enhanced precipitation and by the onset of extreme arid conditions at 1550 14C BP (1500 cal. BP).
.
Complex landslides, capable of reactivation, are typical slope movements in high relief areas. Due to their distribution, size and kinematics, these landforms represent a major hazard, posing a high risk to populations, settlements and infrastructures. This paper integrates geomorphological analyses, instrumental measurements and dendrochronological approaches in assessing a large, reactivated landslide system on the southern piedmont of Monte Sirino (southern Italy). The landslide system is associated with weak geological structures, earthquake activity, and rapid recent incision of the mid‐Pleistocene Noce lake deposits. Potential reactivation triggers include a higher regional annual rainfall, one of the highest in southern Italy, and more frequent heavy snowfalls in recent decades. Reactivation of the Sirino landslide system has important implications for the motorway connecting Salerno and Reggio Calabria, which crosses it. The results of our study show that the slide is reactivated with an almost decadal frequency and that major reactivations are correlated to prolonged snowfall, which occurs with increasing frequency in the southern Apennines. The last observation suggests the need for similar studies on the behaviour of other landslide systems in the southern Apennines, performing integrated approaches such as geotechnical and dendrogeomorphological analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.