The motivation for this paper is to create new Philos-type oscillation criteria that are established for third-order mixed neutral differential equations with distributed deviating arguments. The key idea of our approach is to use the triple of the Riccati transformation techniques and the integral averaging technique. The established criteria improve, simplify and complement results that have been published recently in the literature. An example is also given to demonstrate the applicability of the obtained conditions.
The achieved results are based on the new comparison principles, which help us decrease the problem of the wavering between the third and first-order equations. Examples are given to prove the significance of new theorems.
Symmetry plays an essential role in determining the correct methods for the oscillatory properties of solutions to differential equations. This paper examines some new oscillation criteria for unbounded solutions of third-order neutral differential equations of the form (r2(ς)((r1(ς)(z′(ς))β1)′)β2)′ + ∑i=1nqi(ς)xβ3(ϕi(ς))=0. New oscillation results are established by using generalized Riccati substitution, an integral average technique in the case of unbounded neutral coefficients. Examples are given to prove the significance of new theorems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.