The Optical Mesosphere Thermosphere Imagers (OMTI) have been developed to investigate the dynamics of the upper atmosphere through nocturnal airglow emissions. The OMTI consist of an imaging Fabry-Perot interferometer, three all-sky cooled-CCD cameras, three tilting photometers, and a Spectral Airglow Temperature Imager (SATI) with two container houses to install them in. These instruments measure wind, temperature and 2-dimensional airglow patterns in the upper atmosphere at multi-wavelengths of OI (557.7 nm and 630.0 nm), OH (6-2) bands, O 2 (0, 1) bands, and Na (589.3 nm), simultaneously. Examples of the data are shown for the cameras, the photometers, and the SATI based on the airglow observation at a mid-latitude station in Japan. Good correlation of the photometer and SATI observations is obtained. A comparison is shown for small-and large-scale wave structures in airglow images at four wavelengths around the mesopause region using four cooled-CCD cameras. We found an event during which large-scale bands, small-scale row-like structures, and large-scale front passage occur simultaneously.
We have developed new Fabry-Perot interferometers (FPIs) that are designed to measure thermospheric winds and temperatures as well as mesospheric winds through the airglow/aurora emissions at wavelengths of 630.0 nm and 557.7 nm, respectively. One for mesosphere (557.7 nm) and thermosphere (630.0 nm) measurements, respectively. The 630.0-nm airglow observations at Shigaraki, Japan, by FP02-FP04 and by the American FPI instruments give thermospheric wind velocities with typical random errors that vary from 2 m s −1 to more than 50 m s −1 depending on airglow intensity.
The Solar-Terrestrial Environment Laboratory (STEL) induction magnetometer network has been developed to investigate the propagation characteristics of high-frequency geomagnetic pulsations in the Pc1 frequency range (0.2-5 Hz). Five induction magnetometers were installed in the period 2005-2008 at Athabasca in Canada, Magadan and Paratunka in Far East Russia, and Moshiri and Sata in Japan. The sensitivity of these magnetometers is between 0.3 and 13 V/nT at turnover frequencies of 1.7-5.5 Hz. GPS time pulses are used for accurate triggering of the 64-Hz data sampling. We show examples of PiB/Pc1 magnetic pulsations observed at these five stations, as well as the harmonic structure of ionospheric Alfvén resonators observed at Moshiri. We found that the Pc1 packets are slightly modulated as they propagate from high to low latitudes in the ionospheric duct. These network observations are expected to contribute to our understanding of Pc1-range magnetic pulsations and their interaction with relativistic electrons by combining the obtained results with future satellite missions that observe radiation belt particles.
We have developed a three-channel imaging Fabry-Perot interferometer with which to measure atmospheric wind and temperature in the mesosphere and thermosphere through nocturnal airglow emissions. The interferometer measures two-dimensional wind and temperature for wavelengths of 630.0 nm (OI, altitude, 200-300 km), 557.7 nm (OI, 96 km), and 839.9 nm (OH, 86 km) simultaneously with a time resolution of 20 min, using three cooled CCD detectors with liquid-N(2) Dewars. Because we found that the CCD sensor moves as a result of changes in the level of liquid N(2) in the Dewars, the cooling system has been replaced by thermoelectric coolers. The fringe drift that is due to changes in temperature of the etalon is monitored with a frequency-stabilized He-Ne laser. We also describe a data-reduction scheme for calculating wind and temperature from the observed fringes. The system is fully automated and has been in operation since June 1999 at the Shigaraki Observatory (34.8N, 136.1E), Shiga, Japan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.