Results from photooxidation of aromatic compounds in a reaction chamber show that a substantial fraction of the organic aerosol mass is composed of polymers. This polymerization results from reactions of carbonyls and their hydrates. After aging for more than 20 hours, about 50% of the particle mass consists of polymers with a molecular mass up to 1000 daltons. This results in a lower volatility of this secondary organic aerosol and a higher aerosol yield than a model using vapor pressures of individual organic species would predict.
Secondary organic aerosol (SOA) formation from the photooxidation of an anthropogenic (1,3,5-trimethylbenzene) and a biogenic (alpha-pinene) precursor was investigated at the new PSI smog chamber. The chemistry of the gas phase was followed by proton transfer reaction mass spectrometry, while the aerosol chemistry was investigated with aerosol mass spectrometry, ion chromatography, laser desorption ionization mass spectrometry, and infrared spectroscopy, along with volatility and hygroscopicity studies. Evidence for oligomer formation for SOA from both precursors was given by an increasing abundance of compounds with a high molecular weight (up to 1000 Da) and by an increasing thermal stability with increasing aging time. The results were compared to data obtained from ambient aerosol samples, revealing a number of similar features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.