A method for photon dose calculation in radio therapy planning using pencil beam energy deposition kernels is presented. It is designed to meet the requirements of an algorithm for 3-D treatment planning that is general enough to handle irregularly shaped radiation fields incident on a heterogeneous patient. It is point oriented and thus faster than a full 3-D convolution algorithm and uses the same physical data base to characterize a clinical beam as a full 3-D convolution algorithm. It is shown that photon therapy beams can be characterized with great accuracy from a combination of precalculated Monte Carlo energy deposition kernels and dose distributions measured in a water phantom. The data are used to derive analytical pencil beam kernels that are approximately partitionated into the dose from (i) primary released electrons and positrons, (ii) scattered, bremsstrahlung, and annihilation photons, (iii) contaminating photons, and (iv) charged particles from the collimator head. A semianalytical integration method, based on triangulation of the field, is developed for dose calculation using the analytical kernels. Dose is calculated in units normalized to the incident energy fluence which facilitates output factor calculation. For application in heterogeneous media, a scatter correction factor is derived using monodirectional convolution along the ray path. In homogeneous media results are compared with measurements and in heterogeneous media with Monte Carlo calculations and the Batho method.
Dose calculations for treatment planning of photon beam radiotherapy require a model of the beam to drive the dose calculation models. The beam shaping process involves scattering and filtering that yield radiation components which vary with collimator settings. The necessity to model these components has motivated the development of multisource beam models. We describe and evaluate clinical photon beam modeling based on multisource models, including lateral beam quality variations. The evaluation is based on user data for a pencil kernel algorithm and a point kernel algorithm (collapsed cone) used in the clinical treatment planning systems Helax-TMS and Nucletron-Oncentra. The pencil kernel implementations treat the beam spectrum as lateral invariant while the collapsed cone involves off axis softening of the spectrum. Both algorithms include modeling of head scatter components. The parameters of the beam model are derived from measured beam data in a semiautomatic process called RDH (radiation data handling) that, in sequential steps, minimizes the deviations in calculated dose versus the measured data. The RDH procedure is reviewed and the results of processing data from a large number of treatment units are analyzed for the two dose calculation algorithms. The results for both algorithms are similar, with slightly better results for the collapsed cone implementations. For open beams, 87% of the machines have maximum errors less than 2.5%. For wedged beams the errors were found to increase with increasing wedge angle. Internal, motorized wedges did yield slightly larger errors than external wedges. These results reflect the increased complexity, both experimentally and computationally, when wedges are used compared to open beams.
The implementation of two algorithms for calculating dose distributions for radiation therapy treatment planning of intermediate energy proton beams is described. A pencil kernel algorithm and a depth penetration algorithm have been incorporated into a commercial three dimensional treatment planning system (Helax-TMS, Helax AB, Sweden) to allow conformal planning techniques using irregularly shaped fields, proton range modulation, range modification and dose calculation for non-coplanar beams. The pencil kernel algorithm is developed from the Fermi Eyges formalism and Molière multiple-scattering theory with range straggling corrections applied. The depth penetration algorithm is based on the energy loss in the continuous slowing down approximation with simple correction factors applied to the beam penumbra region and has been implemented for fast, interactive treatment planning. Modelling of the effects of air gaps and range modifying device thickness and position are implicit to both algorithms. Measured and calculated dose values are compared for a therapeutic proton beam in both homogeneous and heterogeneous phantoms of varying complexity. Both algorithms model the beam penumbra as a function of depth in a homogeneous phantom with acceptable accuracy. Results show that the pencil kernel algorithm is required for modelling the dose perturbation effects from scattering in heterogeneous media.
The use of dynamic movements on linear accelerators during irradiation has found a revised interest lately due to the integration of computers to control the accelerator. In this paper, dynamic wedge fields that are produced by moving one of the collimator blocks during irradiation are studied. Since these wedge fields differ from those of mechanical wedges, certain requirements are to be met on the treatment planning system. A pencil-beam-based treatment planning system that uses the resultant energy fluence distribution from the dynamic collimator movement has been extensively reviewed. In calculations, the system treats the dynamic collimated field as a single, modulated field that yields calculation times close to those for open beams. Details are given on the theoretical model used for the calculation of dynamically generated dose distributions. Measurements of depth doses, profiles, and output factors in dynamic wedge fields indicate that calculations accurately predict the outcome from dynamic wedges without any additional measurements other than those used for characterization of static open beams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.