We have used empirical mode decomposition (EMD) method, which is especially well fitted for analyzing time-series data representing nonstationary and nonlinear processes. This method could decompose any time-varying data into a finite set of functions called “intrinsic mode functions” (IMFs). The EMD analysis successively extracts the IMFs with the highest local temporal frequencies in a recursive way. The extracted IMFs represent a set of successive low-pass spatial filters based entirely on the properties exhibited by the data. The IMFs are mutually orthogonal and more effective in isolating physical processes of various time scales. The results showed that most of the IMFs have normal distribution. Therefore, the energy density distribution of IMF samples satisfiesχ2-distribution which is statistically significant. This study suggested that the recent global warming along with decadal climate variability contributes not only to the more extreme warm events, but also to more frequent, long lasting drought and flood.
This paper studies the dynamics of stock market return volatility of India and Japan. The TGARCH-M model is implemented. These markets are impacted asymmetrically by bad news and good news. The return volatility persists in both countries.
This article examines a wide variety of popular volatility models for stock index return, including the random walk (RW), autoregressive, generalized autoregressive conditional heteroscedasticity (GARCH), and asymmetric GARCH models with normal and non-normal (Student's t and generalized error) distributional assumption. Fitting these models to the Chittagong stock index return data from the period 2 January 1999 to 29 December 2005, we found that the asymmetric GARCH/GARCH model fits better under the assumption of non-normal distribution than under normal distribution. Non-parametric specification tests show that the RW-GARCH, RW-TGARCH, RW-EGARCH, and RW-APARCH models under the Student's t-distributional assumption are significant at the 5% level. Finally, the study suggests that these four models are suitable for the Chittagong Stock Exchange of Bangladesh. We believe that this study would be of great benefit to investors and policy makers at home and abroad.random walk, GARCH, asymmetric GARCH, non-parametric specification test, Student's t-distribution, generalized error distribution,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.