Abstract. The photooxidation of methacrolein was studied in the aqueous phase under simulated cloud droplet conditions. The obtained rate constant of OH-oxidation of methacrolein at 6°C in unbuffered solutions was 5.8(±0.9)×109 M−1 s−1. The measured rate coefficient is consistent with OH-addition on the C=C bond. This was confirmed by the mechanism established on the study of the reaction products (at 25°C in unbuffered solutions) where methylglyoxal, formaldehyde, hydroxyacetone and acetic acid/acetate were the main reaction products. An upper limit for the total carbon yield was estimated to range from 53 to 85%, indicating that some reaction products remain unidentified. A possible source of this mismatch is the formation of higher molecular weight compounds as primary reaction products which are presented in El Haddad et al. (2009) and Michaud et al. (2009).
Vinyl acetate is widely used in industry. It has been classified as a high-production volume (HPV) chemical in the United States. To evaluate its impact on the environment and air quality, its atmospheric reactivity toward the three main tropospheric oxidants (OH, NO(3), and O(3)) has been investigated. Kinetic and mechanistic experiments have been conducted at room temperature and atmospheric pressure using an indoor Pyrex simulation chamber coupled to Fourier transform infrared (FTIR) and UV-visible spectrometers. Rate constants for the reactions of vinyl acetate with OH, NO(3), and O(3) were equal to (2.3 +/- 0.3) x 10(-11), (7.3 +/- 1.8) x 10(-15), and (3.0 +/- 0.4) x 10(-18) cm(3) molecule(-1) s(-1), respectively. From these data, tropospheric lifetimes of vinyl acetate have been estimated as follows: tau(OH) = 6 h, tau(NO(3)) = 6 days, and tau(O(3)) = 5 days. This demonstrates that reaction with OH radicals is the main tropospheric loss process of this compound. From the mechanistic experiments, main oxidation products have been identified and quantified and oxidation schemes have been proposed for each studied reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.