Background The Psoriasis Area and Severity Index (PASI) score is commonly used in clinical practice and research to monitor disease severity and determine treatment efficacy. Automating the PASI score with deep learning algorithms, like Convolutional Neural Networks (CNNs), could enable objective and efficient PASI scoring. Objectives To assess the performance of image-based automated PASI scoring in anatomical regions by CNNs and compare the performance of CNNs to image-based scoring by physicians.Methods Imaging series were matched to PASI subscores determined in real life by the treating physician. CNNs were trained using standardized imaging series of 576 trunk, 614 arm and 541 leg regions. CNNs were separately trained for each PASI subscore (erythema, desquamation, induration and area) in each anatomical region (trunk, arms and legs). The head region was excluded for anonymity. Additionally, PASI-trained physicians retrospectively determined imagebased subscores on the test set images of the trunk. Agreement with the real-life scores was determined with the intraclass correlation coefficient (ICC) and compared between the CNNs and physicians.Results Intraclass correlation coefficients between the CNN and real-life scores of the trunk region were 0.616, 0.580, 0.580 and 0.793 for erythema, desquamation, induration and area, respectively, with similar results for the arms and legs region. PASI-trained physicians (N = 5) were in moderate-good agreement (ICCs 0.706-0.793) with each other for image-based PASI scoring of the trunk region. ICCs between the CNN and real-life scores were slightly higher for erythema (0.616 vs. 0.558), induration (0.580 vs. 0.573) and area scoring (0.793 vs. 0.694) than image-based scoring by physicians. Physicians slightly outperformed the CNN on desquamation scoring (0.580 vs. 0.589).Conclusions Convolutional Neural Networks have the potential to automatically and objectively perform image-based PASI scoring at an anatomical region level. For erythema, desquamation and induration scoring, CNNs performed similar to physicians, while for area scoring CNNs outperformed physicians on image-based PASI scoring.
Enabling handheld perfusion imaging would drastically improve the feasibility of perfusion imaging in clinical practice. Therefore, we examine the performance of handheld laser speckle contrast imaging (LSCI) measurements compared to mounted measurements, demonstrated in psoriatic skin. A pipeline is introduced to process, analyze and compare data of 11 measurement pairs (mounted-handheld LSCI modes) operated on 5 patients and various skin locations. The on-surface speeds (i.e. speed of light beam movements on the surface) are quantified employing mean separation (MS) segmentation and enhanced correlation coefficient maximization (ECC). The average on-surface speeds are found to be 8.5 times greater in handheld mode compared to mounted mode. Frame alignment sharpens temporally averaged perfusion maps, especially in the handheld case. The results show that after proper post-processing, the handheld measurements are in agreement with the corresponding mounted measurements on a visual basis. The absolute movement-induced difference between mounted-handheld pairs after the background correction is $$16.4\pm 9.3~\%$$ 16.4 ± 9.3 % (mean ± std, $$n=11$$ n = 11 ), with an absolute median difference of $$23.8\%$$ 23.8 % . Realization of handheld LSCI facilitates measurements on a wide range of skin areas bringing more convenience for both patients and medical staff.
Background Skin microvasculature changes are crucial in psoriasis development and correlate with perfusion. The noninvasive Handheld Perfusion Imager (HAPI) examines microvascular skin perfusion in large body areas using laser speckle contrast imaging (LSCI). Objectives To (i) assess whether increased perilesional perfusion and perfusion inhomogeneity are predictors for expansion of psoriasis lesions and (ii) assess feasibility of the HAPI system in a mounted modality. Methods In this interventional pilot study in adults with unstable plaque psoriasis, HAPI measurements and color photographs were performed for lesions present on one body region at week 0, 2, 4, 6 and 8. The presence of increased perilesional perfusion and perfusion inhomogeneity was determined. Clinical outcome was categorized as increased, stable or decreased lesion surface between visits. Patient feedback was collected on a 10‐point scale. Results In total, 110 lesions with a median follow‐up of 6 (IQR 6.0) weeks were assessed in 6 patients with unstable plaque psoriasis. Perfusion data was matched to 281 clinical outcomes after two weeks. A mixed multinomial logistic regression model revealed a predictive value of perilesional increased perfusion (OR 9.90; p < 0.001) and perfusion inhomogeneity (OR 2.39; p = 0.027) on lesion expansion after two weeks compared to lesion stability. HAPI measurements were considered fast, patient‐friendly and important by patients. Conclusion Visualization of increased perilesional perfusion and perfusion inhomogeneity by noninvasive whole field LSCI holds potential for prediction of psoriatic lesion expansion. Furthermore, the HAPI is a feasible and patient‐friendly tool.
<b><i>Introduction:</i></b> Transdermal analysis patches (TAPs) noninvasively measure soluble proteins in the stratum corneum. Ultimately, such local protein profiles could benefit the search for biomarkers to improve personalized treatment in psoriasis. This study aimed to explore the patient friendliness and protein detection by TAP in pediatric psoriasis in daily clinical practice. <b><i>Methods:</i></b> In this observational study, TAPs measuring CXC chemokine ligand (CXCL)-1/2, CC chemokine ligand (CCL)-27, interleukin (IL)-1RA, IL-23, IL-1α, IL-8, IL-4, IL-22, IL-17A, vascular endothelial growth factor (VEGF), human beta-defensin (hBD)-2, hBD-1, and kallikrein-related peptidase (KLK)-5 were applied on lesional, peri-lesional, and non-lesional skin sites of psoriasis patients aged >5 to <18 years. Discomfort during TAP removal as an indicator for patient friendliness was assessed by visual analogue scale (VAS; range 0–10). <b><i>Results:</i></b> Thirty-two patients (median age 14.0 years) were included, of which 19 were treated with solely topical agents and 13 with systemic treatment. The median VAS of discomfort during TAP removal was 1.0 (interquartile range 1.0). Significantly higher levels in lesional versus non-lesional skin were found for IL-1RA, VEGF, CXCL-1/2, hBD-2, and IL-8, whereas lower levels were found for IL-1α. Skin surface proteins were measured in both treatment groups, with significant higher lesional levels of KLK-5, IL-1RA, hBD-2, IL-1α, IL-23, and CCL-27 in the systemic treatment group. <b><i>Conclusion:</i></b> The TAP platform holds the potential for patient-friendly and noninvasive monitoring of skin-derived proteins in pediatric psoriasis patients in daily clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.