The degradation of organic light emitting diodes (OLEDs) due to the growth of dark spots can be attributed to the synergy of three external causes: dust particles deposited during the fabrication process, pollution by water vapor, and pollution by oxygen. On the basis of a set of new experiments performed on benchmark devices, we demonstrate that, for a given distribution of dust particles and a given concentration of the polluting agent, water is a thousand times more destructive than oxygen at room temperature. While the thermal diffusion of oxygen causes the oxidation of both the metal at the interface and the dye in the bulk of the device, water acts by an electrochemical process causing the delamination of the electrode.
We have investigated the doping mechanism of pentacene with iodine and its impact on the structure and on the electronic properties of single crystals, powders, and thin films in a large range of iodine concentration up to six iodine per pentacene (PEN) molecule (I/PEN = 6). Three regimes of doping have been identified. In the low doping regime I/PEN < 0.05, the pristine pentacene structure of single crystals is maintained. Electron spin resonance (ESR) evidences a Pauli susceptibility, that is, the characteristic fingerprint of delocalized holes in the valence band of pentacene. In the intermediate doping regime (0.1 < I/PEN ≤ 2.0), iodine diffuses between the (a,b) planes of the pentacene structure and forms an intercalate. Charge transfer between iodine and pentacene is witnessed by both UV−vis and IR signatures of PEN+ cations and related species, for example, cation dimers (PEN+)2 and typical Raman signatures of the I3 - and I5 - species. Spin pairing of pentacene cation radicals is further supported by the observation of a thermally activated behavior of the ESR spin susceptibility. In the heavy doping regime (2 < I/PEN ≤ 6), all traces of structural order vanish, indicating that iodine penetrates within the (a,b) planes of the intercalate in a disordered manner, forming an amorphous-like material. This high degree of disorder results in increased charge localization. Most spin/charge species are ESR-silent and only a limited fraction (a few percents) exhibits a Curie-like susceptibility. Because of disorder, the macroscopic conductivity of doped pentacene single crystals does not exceed a few S/cm at 300 K.
By using pyran‐containing donor–acceptor dyes as doping molecules in organic light‐emitting devices (OLEDs), we scrutinize the effects of charge trapping and polarization induced by the guest molecules in the electro‐active host material. Laser dyes 4‐(dicyanomethylene)‐2‐methyl‐6‐[2‐(julolidin‐9‐yl)phenyl]ethenyl]‐4H‐pyran (DCM2) and the novel 4‐(dicyanomethylene)‐2‐methyl‐6‐{2‐[(4‐diphenylamino)phenyl]ethenyl}‐4H‐pyran (DCM‐TPA) are used as model compounds. The emission color of these polar dyes depends strongly on doping concentration, which we have attributed to polarization effects induced by the doping molecules themselves. Their frontier orbital energy levels are situated within the bandgap of the tris(8‐hydroxyquinoline)aluminum (Alq3) host matrix and allow the investigation of either electron trapping or both electron and hole trapping. In the case of DCM‐TPA doping, we were able to show that electron trapping leads to a partial shift of the recombination zone out of the doped Alq3 region. To impede charge‐recombination processes taking place in the undoped host matrix, a charge‐blocking layer efficiently confines the recombination zone inside the doped zone and gives rise to increased luminous efficiency. For a doping concentration of 1 wt.‐% we obtain a maximum luminous efficiency of 10.4 cd A–1. At this doping concentration, the yellow emission spectrum shows excellent color saturation with CIE chromaticity coordinates x, y of 0.49 and 0.50, respectively. In the case of DCM2 the recombination zone is much less affected for the same doping concentrations, which is ascribed to the fact that both electrons and holes are being trapped. The experimental findings are corroborated with a numerical simulation of the doped multilayer devices.
We observed a dramatic improvement in the performance of polymer light-emitting diodes (LEDs) upon light doping of the organic layer. The LEDs betrayed symmetrical electrical and light-emission characteristics. Their turn-on voltage is lower and their external quantum and power conversion efficiencies are higher by nearly an order of magnitude when compared with devices that utilized a nominally undoped organic layer. We attributed these results to the modification of the tunneling barrier in metal–polymer–metal junctions due to the presence of an induced polarization electric field associated with the ionized dopant counterions and charged polymer chains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.