Membranes containing a wide variety of ternary mixtures of high chain-melting temperature lipids, low chain-melting temperature lipids, and cholesterol undergo lateral phase separation into coexisting liquid phases at a miscibility transition. When membranes are prepared from a ternary lipid mixture at a critical composition, they pass through a miscibility critical point at the transition temperature. Since the critical temperature is typically on the order of room temperature, membranes provide an unusual opportunity in which to perform a quantitative study of biophysical systems that exhibit critical phenomena in the two-dimensional Ising universality class. As a critical point is approached from either high or low temperature, the scale of fluctuations in lipid composition, set by the correlation length, diverges. In addition, as a critical point is approached from low temperature, the line tension between coexisting phases decreases to zero. Here we quantitatively evaluate the temperature dependence of line tension between liquid domains and of fluctuation correlation lengths in lipid membranes to extract a critical exponent, nu. We obtain nu = 1.2 +/- 0.2, consistent with the Ising model prediction nu = 1. We also evaluate the probability distributions of pixel intensities in fluorescence images of membranes. From the temperature dependence of these distributions above the critical temperature, we extract an independent critical exponent of beta = 0.124 +/- 0.03, which is consistent with the Ising prediction of beta = 1/8.
We discuss the role coarse-grained models play in the investigation of the structure and thermodynamics of bilayer membranes, and we place them in the context of alternative approaches. Because they reduce the degrees of freedom and employ simple and soft effective potentials, coarse-grained models can provide rather direct insight into collective phenomena in membranes on large time and length scales. We present a summary of recent progress in this rapidly evolving field, and pay special attention to model development and computational techniques. Applications of coarse-grained models to changes of the membrane topology are illustrated with studies of membrane fusion utilizing simulations and self-consistent field theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.