The methods for treating experimental data in the isomorphous replacement and anomalous scattering methods of macromolecular phase determination have undergone considerable evolution since their inception 50 years ago. The successive formulations used are reviewed, from the most simplistic viewpoint to the most advanced, including the exploration of some blind alleys. A new treatment is proposed and demonstrated for the improved encoding and subsequent exploitation of phase information in the complex plane. It is concluded that there is still considerable scope for further improvements in the statistical analysis of phase information, which touch upon numerous fundamental issues related to data processing and experimental design.
X-ray diffraction is used to study the binding of xenon and krypton to a variety of crystallised proteins: porcine pancreatic elastase; subtilisin Carlsberg from Bacillus licheniformis; cutinase from Fusarium solani; collagenase from Hypoderma lineatum; hen egg lysozyme, the lipoamide dehydrogenase domain from the outer membrane protein P64k from Neisseria meningitidis; urate-oxidase from Aspergillus flavus, mosquitocidal delta-endotoxin CytB from Bacillus thuringiensis and the ligand-binding domain of the human nuclear retinoid-X receptor RXR-alpha. Under gas pressures ranging from 8 to 20 bar, xenon is able to bind to discrete sites in hydrophobic cavities, ligand and substrate binding pockets, and into the pore of channel-like structures. These xenon complexes can be used to map hydrophobic sites in proteins, or as heavy-atom derivatives in the isomorphous replacement method of structure determination.
The gene coding for urate oxidase, an enzyme that catalyzes the oxidation of uric acid to allantoin, is inactivated in humans. Consequently, urate oxidase is used as a protein drug to overcome severe disorders induced by uric acid accumulation. The structure of the active homotetrameric enzyme reveals the existence of a small architectural domain that we call T-fold (for tunnelling-fold) domain. It assembles to form a perfect unusual dimeric alpha 8 beta 16 barrel. Urate oxidase may be the archetype of an expanding new family of tunnel-shaped proteins that now has three members; tetrahydropterin synthase, GTP cyclohydrolase I and urate oxidase. The structure of the active site of urate oxidase around the 8-azaxanthine inhibitor reveals an original mechanism of oxidation that does not require any ions or prosthetic groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.