[1] The science of forests and floods is embroiled in conflict and is in urgent need of reevaluation in light of changing climates, insect epidemics, logging, and deforestation worldwide. Here we show how an inappropriate pairing of floods by meteorological input in analysis of covariance (ANCOVA) and analysis of variance (ANOVA), statistical tests used extensively for evaluating the effects of forest harvesting on floods smaller and larger than an average event, leads to incorrect estimates of changes in flood magnitude because neither the tests nor the pairing account for changes in flood frequency. We also illustrate how ANCOVA and ANOVA, originally designed for detecting changes in means, do not account for any forest harvesting induced change in variance and its critical effects on the frequency and magnitude of larger floods. The outcomes of numerous studies, which applied ANCOVA and ANOVA inappropriately, are based on logical fallacies and have contributed to an ever widening disparity between science, public perception, and often land-management policies for decades. We demonstrate how only an approach that pairs floods by similar frequency, well established in other disciplines, can evaluate the effects of forest harvesting on the inextricably linked magnitude and frequency of floods. We call for a reevaluation of past studies and the century-old, preconceived, and indefensible paradigm that shaped our scientific perception of the relation between forests, floods, and the biophysical environment.
This paper presents a modelling study on the spatial and temporal variability of climate-induced hydrologic changes in the Fraser River basin, British Columbia, Canada. This large basin presents a unique modelling case due to its physiographic heterogeneity and the potentially large implications of changes to its hydrologic regime. The macro-scale Variable Infiltration Capacity (VIC) hydrologic model was employed to simulate 30-year baseline (1970s) and future (2050s) hydrologic regimes based on climate forcings derived from eight global climate models (GCMs) runs under three emissions scenarios (B1, A1B and A2). Bias Corrected Spatial Disaggregation was used to statistically downscale GCM outputs to the resolution of the VIC model (1/16 ). The modelled future scenarios for the 11 sub-basins and three regions (eastern mountains, central plateau and coastal mountains) of the FRB exhibit spatially varied responses, such as, shifts from snow-dominant to hybrid regime in the eastern and coastal mountains and hybrid to rain-dominant regime in the central plateau region. The analysis of temporal changes illustrated considerable uncertainties in the projections obtained from an ensemble of GCMs and emission scenarios. However, direction of changes obtained from the GCM ensembles and emissions scenarios are consistent amongst one another. The most significant temporal changes could include earlier onsets of snowmelt-driven peak discharge, increased winter and spring runoff and decreased summer runoff. The projected winter runoff increases and summer decreases are more pronounced in the central plateau region. The results also revealed increases in the total annual discharge and decreases in the 30-year mean of the peak annual discharge. Such climate-induced changes could have implications for water resources management in the region. The spatially and temporally varied hydro-climatic projections and their range of projections can be used for local-scale adaptation in this important water resource system for British Columbia.
Hydrologic modelling has been applied to assess the impacts of projected climate change within three study areas in the Peace, Campbell and Columbia River watersheds of British Columbia, Canada. These study areas include interior nival (two sites) and coastal hybrid nival–pluvial (one site) hydro‐climatic regimes. Projections were based on a suite of eight global climate models driven by three emission scenarios to project potential climate responses for the 2050s period (2041–2070). Climate projections were statistically downscaled and used to drive a macro‐scale hydrology model at high spatial resolution. This methodology covers a large range of potential future climates for British Columbia and explicitly addresses both emissions and global climate model uncertainty in the final hydrologic projections. Snow water equivalent is projected to decline throughout the Peace and Campbell and at low elevations within the Columbia. At high elevations within the Columbia, snow water equivalent is projected to increase with increased winter precipitation. Streamflow projections indicate timing shifts in all three watersheds, predominantly because of changes in the dynamics of snow accumulation and melt. The coastal hybrid site shows the largest sensitivity, shifting to more rainfall‐dominated system by mid‐century. The two interior sites are projected to retain the characteristics of a nival regime by mid‐century, although streamflow‐timing shifts result from increased mid‐winter rainfall and snowmelt, and earlier freshet onset. Copyright © 2012 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.