We present four companion digital models of the age, age uncertainty, spreading rates, and spreading asymmetries of the world's ocean basins as geographic and Mercator grids with 2 arc min resolution. The grids include data from all the major ocean basins as well as detailed reconstructions of back‐arc basins. The age, spreading rate, and asymmetry at each grid node are determined by linear interpolation between adjacent seafloor isochrons in the direction of spreading. Ages for ocean floor between the oldest identified magnetic anomalies and continental crust are interpolated by geological estimates of the ages of passive continental margin segments. The age uncertainties for grid cells coinciding with marine magnetic anomaly identifications, observed or rotated to their conjugate ridge flanks, are based on the difference between gridded age and observed age. The uncertainties are also a function of the distance of a given grid cell to the nearest age observation and the proximity to fracture zones or other age discontinuities. Asymmetries in crustal accretion appear to be frequently related to asthenospheric flow from mantle plumes to spreading ridges, resulting in ridge jumps toward hot spots. We also use the new age grid to compute global residual basement depth grids from the difference between observed oceanic basement depth and predicted depth using three alternative age‐depth relationships. The new set of grids helps to investigate prominent negative depth anomalies, which may be alternatively related to subducted slab material descending in the mantle or to asthenospheric flow. A combination of our digital grids and the associated relative and absolute plate motion model with seismic tomography and mantle convection model outputs represents a valuable set of tools to investigate geodynamic problems.
Earth's long-term sea-level history is characterized by widespread continental flooding in the Cretaceous period (approximately 145 to 65 million years ago), followed by gradual regression of inland seas. However, published estimates of the Late Cretaceous sea-level high differ by half an order of magnitude, from approximately 40 to approximately 250 meters above the present level. The low estimate is based on the stratigraphy of the New Jersey margin. By assimilating marine geophysical data into reconstructions of ancient ocean basins, we model a Late Cretaceous sea level that is 170 (85 to 270) meters higher than it is today. We use a mantle convection model to suggest that New Jersey subsided by 105 to 180 meters in the past 70 million years because of North America's westward passage over the subducted Farallon plate. This mechanism reconciles New Jersey margin-based sea-level estimates with ocean basin reconstructions.
A marked bend in the Hawaiian-Emperor seamount chain supposedly resulted from a recent major reorganization of the plate-mantle system there 50 million years ago. Although alternative mantle-driven and plate-shifting hypotheses have been proposed, no contemporaneous circum-Pacific plate events have been identified. We report reconstructions for Australia and Antarctica that reveal a major plate reorganization between 50 and 53 million years ago. Revised Pacific Ocean sea-floor reconstructions suggest that subduction of the Pacific-Izanagi spreading ridge and subsequent Marianas/Tonga-Kermadec subduction initiation may have been the ultimate causes of these events. Thus, these plate reconstructions solve long-standing continental fit problems and improve constraints on the motion between East and West Antarctica and global plate circuit closure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.