Harnessing ferroelectric negative capacitance in Hf0.5Zr0.5O2‐based thin films is promising for applications in nanoscale electronic devices with ultralow power dissipation, due to their ultimate scalability and semiconductor process compatibility. However, so far, it has been unclear if negative capacitance is an intrinsic material property of ferroelectric Hf0.5Zr0.5O2, or if it is an extrinsic effect caused by specific domain configurations and lateral domain wall motion as seen in perovskite ferroelectrics. Here, symmetric and asymmetric Hf0.5Zr0.5O2/Al2O3‐based ferroelectric/dielectric heterostructures are investigated to understand the relationship among depolarization, interfacial charge, domain formation, and negative capacitance. To achieve this, detailed electrical characterization is combined with structural data, analytical modeling, and numerical simulations. The findings suggest that negative capacitance in these ferroelectric/dielectric heterostructures is an intrinsic property of the Hf0.5Zr0.5O2 layer, which has important implications for potential applications. Furthermore, it is experimentally observed that the energy barrier for polarization switching in Hf0.5Zr0.5O2 is largely independent of the domain configuration and layer thickness, which confirms recent predictions by first principles calculations.
We here report a joint experimental and theoretical analysis of polarization switching in ferroelectric tunnel junctions. Our results show that the injection and trapping of charge into the ferroelectric-dielectric stack has a large influence on the polarization switching. Our results are relevant to the physical understanding and to the design of the devices, and for both memory and memristor applications.
We here report a joint experimental and theoretical analysis of polarization switching in ferroelectric tunnel junctions. Our results show that the injection and trapping of charge into the ferroelectric-dielectric stack has a large influence on the polarization switching. Our results are relevant to the physical understanding and to the design of the devices, and for both memory and memristor applications.
In this work, we present a clear evidence, based on numerical simulations and experiments, that the polarization compensation due to trapped charge strongly influences the ON/OFF ratio in Hf0.5Zr0.5O2 (HZO) based Ferroelectric Tunnel Junctions (FTJs). Furthermore, we identify and explain compensation conditions that enable an optimal operation of FTJs. Our results provide both key physical insight and design guidelines for the operation of FTJs as multi-level synaptic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.