A future fusion reactor is expected to have all-metal plasma facing materials (PFM) to ensure low erosion rates, low tritium retention and stability against high neutron fluences. As a consequence, intrinsic radiation losses in the plasma edge and divertor are low in comparison to devices with carbon PFMs. To avoid localized overheating in the divertor, intrinsic low-Z and medium-Z impurities have to be inserted into the plasma to convert a major part of the power flux into radiation and to facilitate partial divertor detachment. For burning plasma conditions in ITER, which operates not far above the L-H threshold power, a high divertor radiation level will be mandatory to avoid thermal overload of divertor components. Moreover, in a prototype reactor, DEMO, a high main plasma radiation level will be required in addition for dissipation of the much higher alpha heating power. For divertor plasma conditions in present day tokamaks and in ITER, nitrogen appears most suitable regarding its radiative characteristics. If elevated main chamber radiation is desired as well, argon is the best candidate for simulataneous enhancement of core and divertor radiation, provided sufficient divertor compression can be obtained. The parameter P sep /R, the power flux through the separatrix normalized by the major radius, is suggested as a suitable scaling (for a given electron density) for the extrapolation of present day divertor conditions to larger devices. The scaling for main chamber radiation from small to large devices has a higher, more favourable dependence of about P rad,main /R 2 . Krypton provides the smallest fuel dilution for DEMO conditions, but has a more centrally peaked radiation profile compared to argon. For investigation of the different effects of main chamber and divertor radiation and for optimization of their distribution, a double radiative feedback system has been implemented in ASDEX Upgrade. About half the ITER/DEMO values of P sep /R have been achieved so far, and close to DEMO values of P rad,main /R 2 , albeit at lower P sep /R. Further increase of this parameter may be achieved by increase of the neutral pressure or improved divertor geometry.
The W-transport in the core plasma of JET is investigated experimentally by deriving the W-concentration profiles from the modelling of the signals of the soft x-ray cameras. For the case of pure neutral beam heating W accumulates in the core (r/a < 0.3) approaching W-concentrations of 10 −3 in between the sawtooth crashes, which flatten the W-profile to a concentration of about 3 × 10 −5 . When central Ion cyclotron resonant heating is additionally applied the core W-concentration decays in phases that exhibit a changed mode activity, while also the electron temperature increases and the density profile becomes less peaked. The immediate correlation between the change of magnetohydrodymanic (MHD) and the removal of W from the plasma core supports the hypothesis that the change of the MHD activity is the underlying cause for the change of transport. Furthermore, a discharge from the ASDEX Upgrade is investigated. In this case the plasma profiles exhibit small changes only, while the most prominent change occurs in the W-content of the confined plasma caused by the reduction of the fuelling deuterium gas puff. Concomintantly, the W-concentration profiles in the core plasma r/a < 0.2 steepen up reminescent to the well-known connection between central radiation and transport during cases with strong, established W-accumulation, while in the present analysis such a causality between the two during the onset of W-accumulation could not be pinned down. Both case studies exemplify that small changes of the core parameters of a plasma my influence the W-transport in the plasma core drastically.
Abstract. The transport of argon as trace impurity has been investigated in electron cyclotron resonance heated L-mode discharges at ASDEX Upgrade to test recent theories predicting the rise of an outward impurity convection. The profiles of the argon transport coefficients for r/a < 0.65 have been determined by analysing the linear flux-gradient dependency of the total argon ion density evolution after the puff. A new methodology to experimentally obtain the total impurity ion density from the integrated use of two spectroscopic diagnostic and the 1D impurity transport code STRAHL has been developed. Results confirm the enhancement in diffusivity and the rise of the positive convection observed in previous studies, but show for the first time how these effects are strongly localized around the electron cyclotron resonance heating deposition radius. These experimental results are found in promising qualitative agreement with a set of quasi-linear gyrokinetic simulations with the code GS2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.