The aim of the present paper is to investigate the surface waves in a homogeneous, isotropic, viscoelastic solid medium of n th order, including time rate of strain under the influence of surface stresses. The theory of generalized surface waves is developed to investigate particular cases of waves such as the Stoneley, Rayleigh, and Love waves. Corresponding equations have been obtained for different cases. These are reduced to classical results, when the effects of surface stresses and viscosity are ignored.
The aim of the present article is to investigate the surface waves in anisotropic, elastic solid medium under the influence of gravity. The theory of generalised surface waves has first been developed and then used to investigate particular cases of waves, viz., Stoneley, Rayleigh, and Love. The wave velocity equations have been obtained for different cases and are in well agreement with the corresponding classical result, when the effect of gravity, viscosity, and fibre-reinforced parameters of the material medium are ignored.
The present paper studies the Propagation of SH waves in a double non-homogeneous crustal layers lying over an isotropic homogeneous half-space, where upper layer ((i.e. rigidity and density varying trigonometrically with depth) and intermediate layer (i.e. rigidity and density varying parabolically with depth). The wave velocity equation has been obtained. Closed form solutions have been derived separately for the displacements in two non-homogeneous crustal layers and lower half-space. The dispersion curves are depicted by means of graphs for different values of non-homogeneity parameters and thickness ratio for layers.
This study discusses the dispersion equation for SH waves in a non-homogeneous monoclinic layer over a semi-infinite isotropic medium. The wave velocity equation has been obtained. In the isotropic case, when the non-homogeneity is absent, the dispersion equation reduces to a standard SH wave equation. The dispersion curves are depicted by means of graphs for different values of non-homogeneity parameters for the layer and semi-infinite medium.
The aim of the present paper is to investigate surface waves in an anisotropic, elastic solid medium under the influence of gravity. First, a theory of generalised surface waves was developed and then it was employed to investigate particular cases of waves, viz., Stoneley and Rayleigh, Love type. The wave velocity equations were obtained for different cases and they are in well agreement with the corresponding classical result, when the effect of gravity, viscosity as well as parameters for fibre-reinforcement of the material medium are ignored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.