The relativistic wave equations determine the dynamics of quantum fields in the context of quantum field theory. One of the conventional tools for dealing with the relativistic bound state problem is the Klein-Fock-Gordon equation. In this work, using a developed scheme, we present how to surmount the centrifugal part and solve the modified Klein-Fock-Gordon equation for the linear combination of Hulthén and Yukawa potentials. In particular, we show that the relativistic energy eigenvalues and corresponding radial wave functions are obtained from supersymmetric quantum mechanics by applying the shape invariance concept. Here, both scalar potential conditions, which are whether equal and nonequal to vector potential, are considered in the calculation. The energy levels and corresponding normalized eigenfunctions are represented as a recursion relation regarding the Jacobi polynomials for arbitrary
l
states. Beyond that, a closed form of the normalization constant of the wave functions is found. Furthermore, we state that the energy eigenvalues are quite sensitive with potential parameters for the quantum states. The nonrelativistic and relativistic results obtained within SUSY QM overlap entirely with the results obtained by ordinary quantum mechanics, and it displays that the mathematical implementation of SUSY quantum mechanics is quite perfect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.