In this paper, the problem of determining the depth and radius of a circular pipe along with the soil characteristics is studied, using electromagnetic waves with a fuzzy support vector machine as well as a fuzzy support vector machine. To this end, three neural network based fuzzy support vectors are used to determine the soil, depth, and dimensions. Also, using the 2D time domain numerical simulations of electromagnetic field scattering, along with MATLAB software, 1030 data are generated for training as well as neural network verification. Given the fact that for each of the three parameters the nature of the problem is different, separate neural networks are considered with different parameters, thus the number of different data for the network training is considered. In all three cases, the neural network parameters are optimized using genetic algorithm to reduce the error and also reduce the number of support vectors. It should be noted that the objective function of the genetic algorithm consists of two components of the error, as well as the number of membership functions, which can be determined by determining a control parameter. For soil permittivity, the algorithm can accurately predict 93% of permittivities, and it decreases to 89.8 for the pipe depth determination. For diameter it is seen that for 69.3 of the cases the algorithm can correctly classify the pipes.
This paper presents a new on-line technique for denoising impulsive vibration signals in noisy environments using Wavelet Packets. The proposed algorithm is based on localizing the frequency subbands of the resonances embedded in impulsive vibration signals. The performance of the algorithm is evaluated in denoising real vibration signals measured from faulty bearings. The results compared to the theoretical values and those obtained by the HFD algorithm show the effectiveness of the proposed algorithm while the computational cost reduces to half.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.