The type 2 isoform of 11beta-hydroxysteroid dehydrogenase (11beta-HSD2), which inactivates cortisol (F) to cortisone (E), has been suggested to play a role in the ontogeny of the fetal pituitary-adrenal axis and also protect the developing fetus from the deleterious effects of circulating maternal glucocorticoids. The abundance of 11beta-HSD2 in the placenta and other fetal tissues was inferred from the F/E ratio in 17 term deliveries in both umbilical arterial (1.73 +/- 0.24, mean +/- SE) and umbilical venous blood (1.16 +/- 0.14) compared with adult peripheral venous blood (7.76 +/- 0.57, n = 70). Using sensitive assays for 11beta-HSD2 and an in-house human 11beta-HSD2 antibody, the expression and activity of this enzyme in fresh frozen human placenta increased progressively from first (8-12 weeks, n = 16) and second (13-20 weeks, n = 9) to third trimester (term) pregnancies (39-40 weeks, n = 50). Placental 11beta-HSD2 activity was significantly reduced in deliveries complicated by intrauterine growth restriction (IUGR) [25-36 weeks, n = 12, activity 380 pmol/mg/h median (225-671; 95% confidence interval)], compared with the term deliveries [888 (725-1362)] and with appropriately grown pre-term deliveries [27-36 weeks, n = 14, activity 810 (585-1269)], P < 0.05. In human pregnancy placental 11beta-HSD2 activity increases markedly in the third trimester of pregnancy at a time when maternal circulating levels of glucocorticoid are rising. The finding of attenuated placental 11beta-HSD2 activity in IUGR suggests that glucocorticoids may, in part, contribute to impaired fetal growth and that this is closely controlled in normal gestation through placental 11beta-HSD2 expression.
Human placental development involves coordinated angiogenesis and trophoblast outgrowth that are compromised in intrauterine growth restriction (IUGR). As Tie-2(؊/؊) mice exhibit growth retardation and vascular network malformation, the expression of Tie-2 and its ligands, angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2), were investigated in human placenta from normal pregnancies and those complicated by severe IUGR. Ribonucleotide protection assays showed no significant change in the expression of Ang-2 mRNA between gestationally matched normal and IUGR placentas; however, immunoblots revealed that Ang-2 protein was significantly decreased in IUGR, suggesting that this may contribute to the abnormal development of the villous vasculature. In situ hybridization studies showed that Ang-1 and Tie-2 were detected in the cyto/syncytiotrophoblast bilayer in first-trimester placenta, whereas Ang-2 mRNA was restricted to the cytotrophoblast, suggesting their role in trophoblast function. At term, Ang-1 mRNA and immunoreactive protein were restricted to the paravascular tissues of the primary stem villi, supporting its role in vessel maturation. In contrast, Ang-2 was expressed throughout the term villous core, perhaps to permit the developing placental vascular network to remain in a state of fluidity. As these studies also revealed that trophoblast, in addition to endothelial cells, expressed Tie-2 receptors, we investigated the potential role of Ang-1/Ang-2 on trophoblast proliferation, migration, and the release of NO. Successful placentation requires the development of a low-impedance uteroplacental circulation after transformation of the maternal intramyometrial portion of the spiral arterioles by trophoblast invasion.1 Hemochorial placentation is also dependent on the establishment and maintenance of a competent fetoplacental vascular network formed by the processes of vasculogenesis and branching (first and second trimesters) and nonbranching (third trimester) angiogenesis.
Placenta growth factor (PlGF) is a growth factor which belongs to the vascular endothelial growth factor (VEGF) family and is known to bind to the fms-like tyrosine kinase receptor (flt-1). Using Western blot analysis a 50 kDa band was identified in placental protein extract which corresponded to PlGF homodimer. Immunoreactive PlGF was localised to the vasculosyncytial membrane and in the media of large blood vessels of the placental villi, while staining within the mesenchyme was weak and diffuse. There was moderate staining for PlGF in discrete cells in the chorion and no staining in the epithelial layer of the amnion. The maternal decidual cells showed strong staining for PlGF immunoreactive protein. PlGF mRNA was predominantly expressed by the vasculosyncytial membrane of villous trophoblast, whilst there was no apparent expression of PlGF mRNA within the villous mesenchyme. These results suggest that PlGF may be an important paracrine factor for vascular endothelial cells in placental angiogenesis and an autocrine mediator of trophoblast function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.