Biotransformation is an important parameter in assessing the environmental impact and fate of pesticides since metabolites produced may be either more or less toxic than the parent compound. Sodium arsenate (+5 inorganic), the wood preservative and insecticide, may be converted to both inorganic (+3) and organic compounds (-3) by microorganisms in soil, sediment and water bodies. Biotransformation of sodium arsenate was studied in pure cultures of 5 bacterial species using a mineral salt and limited carbon source medium. Arsenate concentrations were 10 microgram/ml and 100 microgram/ml of arsenic respectively. The rate of biodegradation of the parent compound was described by a first order composite exponential equation of the form Ct = C1e-k1t+C2e-k2t. Rates of production of metabolites (arsenite, monomethylarsine, dimethylarsine and trimethylarsine) were described by a first order exponential equation of the form Ct = Co (1-e-kt).
Iranian fat-tailed sheep and dairy goats were administered the herbicide monosodium methanearsonate orally at a dose of 10 mg. MSMA (as arsenic) per kg. of body weight. The concentration time curves of MSMA in the blood of sheep and goats followed a first order composite exponential equation of the form: Cb(t) = Ae- alpha t + Be- beta t - C degrees be-kat. Absorption, distribution and elimination of MSMA, therefore, corresponds to an open two-compartment model. Arsenic from MSMA was readily absorbed from gastrointestinal tract and distributed in the body fluids and the various tissues. Approximately 90% of the arsenic was excreted in the urine within 120 hrs and small amounts were also recovered in feces. Arsenic accumulation in the tissues was low and urinary excretion was the most important exit route. Arsenic concentrations in milk were low when compared to the controls, which indicates that arsenic is not excreted in the milk to significant levels. The absorption, distribution and overall elimination rate constants for the two animal species studied were statistically different at the 0.95 level of confidence which indicates that there are apparently differences in MSMA metabolism by sheep and goats.
The rate and extent of accumulation and washout of arsenic, during daily oral administration of the herbicide monosodium methanearsonate (MSMA) were evaluated in Iranian dairy sheep and goats. Subjects received a dose of 10 mg of MSMA as arsenic per kg of body weight daily for 28 consecutive days. The total arsenic concentration in blood and milk was measured during and after the period of MSMA administration while arsenic in urine and feces was measured for 10 days following administration of last dosage of MSMA. Arsenic was accumulated slowly during 28 days of MSMA administration and steady states were essentially complete in sheep after 20 days and in goats following 25 days of MSMA administration. Blood arsenic concentration decreased rapidly after termination of MSMA administration. In both test animals, the half-lives of washout were smaller than accumulation. The concentration of arsenic in the urine and feces of both species did not increase significantly over controls and animals were free of arsenic relatively shortly after administration stopped. These data indicate that arsenic from MSMA is mainly absorbed from gastrointestinal tract and is not significantly accumulated in the body. Arsenic is eliminated from body by way of urine and feces with urinary excretion being the most important route.
One hundred and forty wells throughout the City of Tehran and its environs were sampled to determine the chemical quality of the groundwater. Total alkalinity, pH, conductivity, total dissolved solids, hardness and detergent concentrations were determined as well as levels of bicarbonate, calcium, magnesium, sulphate, chloride, sodium, potassium, fluoride, iodide and nitrate. Generally, chemical pollution of the water supplies was low. There were, however, regional elevations in nitrate, chloride and fluoride. Elevated fluoride levels were primarily in the northern regions of the city while high nitrates and chlorides were found primariiy in industrial areas. The health implications of chemical constituents in drinking water are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.