The main catalytic properties of the Hox type hydrogenase isolated from the Gloeocapsa alpicola cells have been studied. The enzyme effectively catalyzes reactions of oxidation and evolution of H2 in the presence of methyl viologen (MV) and benzyl viologen (BV). The rates of these reactions in the interaction with the physiological electron donor/acceptor NADH/NAD+ are only 3-8% of the MV(BV)-dependent values. The enzyme interacts with NADP+ and NADPH, but is more specific to NAD+ and NADH. Purification of the hydrogenase was accompanied by destruction of its multimeric structure and the loss of ability to interact with pyridine nucleotides with retained activity of the hydrogenase component (HoxYH). To show the catalytic activity, the enzyme requires reductive activation, which occurs in the presence of H2, and NADH accelerates this process. The final hydrogenase activity depends on the redox potential of the activation medium (E(h)). At pH 7.0, the enzyme activity in the MV-dependent oxidation of H2 increased with a decrease in E(h) from -350 mV and reached the maximum at E(h) of about -390 mV. However, the rate of H2 oxidation in the presence of NAD+ in the E(h) range under study was virtually constant and equal to 7-8% of the maximal rate of H2 oxidation in the presence of MV.
The unicellular non-N 2 -fixing cyanobacterium Gloeocapsa alpicola CALU 743 contains a bidirectional hydrogenase. Parts of all structural genes, encoding the hydrogenase, were identified, cloned and sequenced. When comparing the sequences with analogous sequences from other cyanobacteria the highest similarity was observed with hox genes from Synechocystis sp. PCC 6803. The hydrogenase activity increased considerably when the cells were grown aerobically in a medium with limiting concentrations of nitrate. However, the relative abundances of hoxH and hoxY transcripts, detected by RT-PCR, did not change significantly, demonstrating that the increase in the activity of G. alpicola hydrogenase was not a result of the increase of the transcription. In contrast, in Anabaena variabilis the induction of a bidirectional hydrogenase activity correlated with the relative level of hoxH and hoxY transcripts. ß : S 0 3 7 8 -1 0 9 7 ( 0 2 ) 0 0 8 9 4 -7
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.