The structure of 'K-76' (l), a complement inhibitor containing a spirobenzofuran unit, obtained from Stachybotrys complementi nov. sp. K-76, is reported.
Nuclei in the central nervous system are 3D aggregates of neurons that have common physiological properties, functionalities, and connectivities. To form specific nuclei, neurons migrate from their birthplace towards the presumptive nuclear region where they change their dynamics to aggregate and rearrange into a distinct 3D structure, a process that we term nucleogenesis. Nuclei, together with the laminar structure, form the basic cytoarchitectonic unit for information processing. However, in contrast to much-studied laminar structures, the neuronal dynamics that contribute to the aggregation process to form nuclei are poorly understood. Here, we analyze nucleogenesis by observing the mouse precerebellar pontine nucleus (PN), and provide the first 4D view of nucleogenesis by tracking neuronal behaviors along the three spatial axes over time. Early- and late-born PN neurons were labeled by in utero electroporation and their behaviors on cultured brain slices were recorded by time-lapse imaging. We find that when PN neurons migrate medially into the nuclear region, many of them switch to migrate radially and laterally, to populate the dorsal and lateral PN regions, respectively. The tendency to switch to radial migration is much less in later-born neurons, whereas that to switch to lateral migration is comparable between the two groups. In contrast to the radial and mediolateral axes, very few PN neurons switch to migrate rostrocaudally. These results could thus provide a framework for understanding the mechanisms that regulate this complex yet important process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.