The RP-HPLC were developed and validated for the estimation of lurasidone HCl as per ICH guidelines. A simple, fast, accurate and precise RP-HPLC method was developed by using methanol: water containing 0.01% ortho phosphoric acid in the ratio of 70:30 (V/V). The method was developed in Eclipse C18 column (100 mm × 4.6 mm, 3.5 μm particle size). The method was found to be linear in the range of 2.5- 15µg/mL with a correlation coefficient value of 0.999. The accuracy studies of RP-HPLC method was performed at three different levels, i.e., 50%, 100%, and 150% and recovery was found to be in the range of 100.1-100.6% .The limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.30-0.92. Satisfactory validation was also obtained from recovery (99.8%) studies, intra-day and interday precision and robustness 2%. The proposed method was found to be accurate, precise and rapid for the analysis of lurasidone.
Background:
The low penetration power and the retention time into the intraocular tissue are the main problems that make difficult for most of the drugs for the ocular drug delivery system. This is for those drugs that are having the low or poor solubility and the low permeability.
Objective:
Nanostructured Lipid Carriers (NLCs) loaded with Itraconazole (ITZ) were formulated with the aim to increase the solubility and enhance the retention time in the intraocular tissue. Methods: The NLCs were prepared by using Pluronic (PF127), stearic acid and oleic acid. Itraconazole loaded Nanostructured lipid carrier were prepared by high-pressure homogenization method and the formulations were prepared and optimized by 3 Level Factorial Design.
Results:
F6 was selected on the basis of better entrapment efficiency (94.65), optimum particle size (310nm), and percentage cumulative release (68.67%). Scanning electron microscopy revealed spherical Nanostructured lipid carrier in the microemulsion. Nanostructured lipid carrier Irritation test showed the non-irritancy and antifungal activity showed a more inhibition zone as compared to the marketed formulation.
Conclusion:
Conclusively the optimized Formulation (F6) shows better results for the ocular drug delivery as compared to the marked formulation.
In this study, a high-performance liquid chromatographic method (HPLC) was developed, validated and applied for the determination of raltegravir in biological sample like saliva. Liquid- liquid extraction was performed for isolation of the drug and elimination of saliva interferences. Samples of saliva was extracted with 50µL of ortho phosphoric acid and 3ml of methanol was added and spiked with raltegravir. The chromatographic separation was performed on Agilent Eclipse C18 (100 mm × 4.6 mm, 3.5µm) column, by using 80:20 v/v acetonitrile: water as a mobile phase under isocratic conditions at a flow rate of 1.0 mL/min for UV detection at 240 nm. Retention time of raltegravir was found to be 1.030 min. Linearity was found to be in the range of 25-1000 ng/mL with regression equation y = 13864x + 40495 and correlation coefficient 0.999. The low % RSD value indicates the method is accurate and precise. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.76 and 2.28 ng/mL, respectively. It can be concluded that this validated HPLC method is easy, precise, accurate, sensitive and selective for determination of raltegravir in saliva.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.