Bone is a dynamic connective tissue which adjusts to load variations through continuous bone remodeling, which occurs due to the dynamic behavior of bone cells. Many researchers made attempts in obtaining the dynamic characteristics of osteoblasts and its role in bone remodeling cycle. While making an effort to understand the effects of mechanical stimuli on the osteoblast, certain ambiguity is observed in the past literatures. This paper is to demonstrate the dynamics of osteoblast cells and exhibition of different natural frequencies during its life cycle. Osteoblast is modeled as a frustum of a sphere, considering it as a continuum model. The three prominent parts of an osteoblast, i.e., membrane, cytoplasm and nucleus are considered with reported material properties. Lifespan of an active osteoblast during bone remodeling cycle is considered as 90 days and progressive osteoblast stages are analysed using Ansys. First ten natural frequencies and mode shapes are extracted for nine stages and reported. It is observed that the natural frequencies of a micron sized osteoblast are in the range of kHz. A mathematical relation for the lifespan of an active osteoblast is obtained using curve fitting for fundamental natural frequencies. The natural frequency for exciting an active osteoblast on each particular day during its lifespan can be derived from the relation. This relation can serve as a guiding tool in bioengineering for in vitro bone cell culturing. Results also throw light on the excitation frequency and natural frequency of an osteoblast for proper analysis purpose. The different modes of vibration of osteoblast is identified and reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.