a b s t r a c t Distributed Energy Resources (DER) scheduling in smart grids presents a new challenge to system operators. The increase of new resources, such as storage systems and demand response programs, results in additional computational efforts for optimization problems. On the other hand, since natural resources, such as wind and sun, can only be precisely forecasted with small anticipation, short-term scheduling is especially relevant requiring a very good performance on large dimension problems. Traditional techniques such as Mixed-Integer Non-Linear Programming (MINLP) do not cope well with large scale problems. This type of problems can be appropriately addressed by metaheuristics approaches. This paper proposes a new methodology called Signaled Particle Swarm Optimization (SiPSO) to address the energy resources management problem in the scope of smart grids, with intensive use of DER. The proposed methodology's performance is illustrated by a case study with 99 distributed generators, 208 loads, and 27 storage units. The results are compared with those obtained in other methodologies, namely MINLP, Genetic Algorithm, original Particle Swarm Optimizatio n (PSO), Evolutionary PSO, and New PSO. SiPSO performance is superior to the other tested PSO variants, demon-strating its adequacy to solve large dimension problems which require a decision in a short period of time.
A B S T R A C TThe large increase of distributed energy resources, including distributed generation, storage systems and demand response, especially in distribution networks, makes the management of the available resources a more complex and crucial process. With wind based generation gaining relevance, in terms of the gen-eration mix, the fact that wind forecasting accuracy rapidly drops with the increase of the forecast anticipation time requires to undertake short-term and very short-term re-scheduling so the final imple-mented solution enables the lowest possible operation costs. This paper proposes a methodology for energy resource scheduling in smart grids, considering day ahead, hour ahead and five minutes ahead scheduling. The short-term scheduling, undertaken five minutes ahead, takes advantage of the high accuracy of the very-short term wind forecasting providing the user with more efficient scheduling solu-tions. The proposed method uses a Genetic Algorithm based approach for optimization that is able to cope with the hard execution time constraint of short-term scheduling. Realistic power system simulation, based on PSCAD ® , is used to validate the obtained solutions. The paper includes a case study with a 33 bus distribution network with high penetration of distributed energy resources implemented in PSCAD ® .
The dawn of smart grid is posing new challenges to grid operation. The introduction of Distributed Energy Resources (DER) requires tough planning and advanced tools to efficiently manage the system at reasonable costs. Virtual Power Players (VPP) are used as means of aggregating generation and demand, which enable smaller producers using different generation technologies to be more competitive. This paper discusses the problem of the centralized Energy Resource Management (ERM), including several types of resources, such as Demand Response (DR), Electric Vehicles (EV) and Energy Storage Systems (ESS) from the VPP's perspective to maximize profits. The complete formulation of this problem, which includes the network constraints, is represented with a complex large-scale mixed integer nonlinear problem. This paper focuses on deterministic and metaheuristics methods and proposes a new multi-dimensional signaling approach for population-based random search techniques. The new approach is tested with two networks with high penetration of DERs. The results show outstanding performance with the proposed multi-dimensional signaling and confirm that standard metaheuristics are prone to fail in solving these kind of problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.