Microcirculatory distress may form one of the earliest stages in the progress of sepsis to multiple organ failure, and shunting of the microcirculation may be an important contributing factor to this development. To evaluate the severity of microcirculatory distress and the effectiveness of resuscitation strategies, new clinical technologies aimed at the microcirculation will need to be developed. It is anticipated that optical spectroscopy will play a major role in the development of such tools.
Molecular oxygen is the primary oxidant in biological systems. The ultimate destination of oxygen in vivo is the mitochondria where it is used in oxidative phosphorylation. The ability of this process to produce an amount of high-energy phosphates adequate to sustain life highly depends on the available amount of oxygen. Despite a vast array of techniques to measure oxygen, major (patho)physiological questions remain unanswered because of the unavailability of quantitative techniques to measure mitochondrial oxygen in situ. Here we demonstrate that mitochondrial PO(2) can be directly measured in living cells by harnessing the delayed fluorescence of endogenous protoporphyrin IX (PpIX), thereby providing a technique with the potential for a wide variety of applications. We applied this technique to different cell lines (V-79 Chinese hamster lung fibroblasts, HeLa cells and IMR 32-K1 neuroblastoma cells) and present the first direct measurements of the oxygen gradient between the mitochondria and the extracellular volume.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.