The polymer composite material’s thermomechanical properties with fiber as reinforcement material have been widely studied in the last few decades. However, these fiber-based polymer composites exhibit problems such as fiber orientation, delamination, fiber defect along the length and bonding are the matter of serious concern in order to improve the thermomechanical properties and obtain isotropic material behavior. In the present investigation filler-based composite material is developed using natural hemp and high thermal conductive silver nanoparticles (SNP) and combination of dual fillers in neat epoxy polymer to investigate the synergetic influence. Among various organic natural fillers hemp filler depicts good crystallinity characteristics, so selected as a biocompatible filler along with SNP conductive filler. For enhancing their thermal conductivity and mechanical properties, hybridization of hemp filler along with silver nanoparticles are conducted. The composites samples are prepared with three different combinations such as sole SNP, sole hemp and hybrid (SNP and hemp) are prepared to understand their solo and hybrid combination. From results it is examined that, chemical treated hemp filler has to maximized its relative properties and showed, 40% weight % of silver nanoparticles composites have highest thermal conductivity 1.00 W/mK followed with hemp filler 0.55 W/mK and hybrid 0.76 W/mK composites at 7.5% of weight fraction and 47.5% of weight fraction respectively. The highest tensile strength is obtained for SNP composite 32.03 MPa and highest young’s modulus is obtained for hybrid composites. Dynamic mechanical analysis is conducted to find their respective storage modulus and glass transition temperature and that, the recorded maximum for SNP composites with 3.23 GPa and 90°C respectively. Scanning electron microscopy examinations clearly illustrated that formation of thermal conductivity chain is significant with nano and micro fillers incorporation.
Palmyra fibres are found to be the renewable and sustainable fiber in textile applications. These fibres possess good tensile strength and found to be used as natural reinforcement material for composites. The main objective of this work is to extract and treat the fibres with varying concentrations of NaOH (2%,3%,4%& 5%) to evaluate the mechanical properties, surface morphology and fibre orientation. The observations in SEM images denote the removal of impurities like hemi cellulose and lignin after the alkali treatment. 4% NaOH treated fibers results in higher tensile strength (63.43 MPa) further increase in alkali concentration to 5% results in a reduction of the tensile strength (62.65MPa). For all the treated fibres elongation at break was found to be higher than the untreated one. The orientation in the fiber structure improves after the alkali treatment up to 4% and a further increase in alkali concentration leads to a decrease in the orientation which was observed through X-ray diffraction studies.
This study aimed to see how different treatments affect the low-stress mechanical properties of micro-denier polyester/cotton (MDP/C—65/35) fabrics. This blend was chosen for the study because it is the most popular blend used in polyester/cotton blended material. The results of fabric properties treated with sericin revealed that fabrics treated with sericin and glutaraldehyde as a cross-linking agent had higher bending rigidity, regardless of how it was tested. Concerning the blend fabrics, it was noticed that there was deterioration in tensile resilience following sericin treatment. Shear rigidity, accompanied by shear hysteresis, showed an increase in sericin-treated fabrics. Compression properties were affected by the treatment, and in general, the fabric suffered deterioration in those the samples were hard. Surface properties such as coefficient of friction, mean deviation of friction and mean deviation of surface contour were found to be higher than those of the control and sericin-treated fabrics in a few cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.