Let Ω be a symmetric generating set of a finite group Γ. Assume that (Γ , Ω) be such that Γ = ⟨Ω ⟩ and Ω satisfies the two conditions C 1 : the identity element e ̸ ∈ Ω and C 2 : if a ∈ Ω , then a −1 ∈ Ω. Given (Γ , Ω) satisfying C 1 and C 2 , define a Cayley graph G = Cay(Γ , Ω) with V (G) = Γ and E(G) = {(x, y) a |x, y ∈ Γ , a ∈ Ω and y = xa}. When Γ = Z n = ⟨Ω ⟩, it is called as circulant graph and denoted by Cir (n, Ω). In this paper, we give a survey about the results on dominating sets in Cayley graphs and circulant graphs. c
Let [Formula: see text] be a commutative ring with identity, [Formula: see text] be a positive integer and [Formula: see text] be the set of all [Formula: see text] matrices over [Formula: see text] For a matrix [Formula: see text] Tr[Formula: see text] is the trace of [Formula: see text] The trace graph of the matrix ring [Formula: see text] denoted by [Formula: see text] is the simple undirected graph with vertex set [Formula: see text][Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if Tr[Formula: see text] The ideal-based trace graph of the matrix ring [Formula: see text] with respect to an ideal [Formula: see text] of [Formula: see text] denoted by [Formula: see text] is the simple undirected graph with vertex set [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if Tr[Formula: see text] In this paper, we investigate some properties and structure of [Formula: see text] Further, it is proved that both [Formula: see text] and [Formula: see text] are Hamiltonian.
Let H be a connected subgraph of a connected graph G. The H-structure connectivity of the graph G, denoted by κ(G;H), is the minimum cardinality of a minimal set of subgraphs F={H1′,H2′,…,Hm′} in G, such that every H′i∈F is isomorphic to H and removal of F from G will disconnect G. The H-substructure connectivity of the graph G, denoted by κs(G;H), is the minimum cardinality of a minimal set of subgraphs F={J1′,J2′,…,Jm′} in G, such that every Ji′∈F is a connected subgraph of H and removal of F from G will disconnect G. In this paper, we provide the H-structure and the H-substructure connectivity of the circulant graph Cir(n,Ω) where Ω={1,…,k,n−k,…,n−1},1≤k≤⌊n2⌋ and the hypercube Qn for some connected subgraphs H.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.