The investigation was focused on the microstructure characterization as well as changes in chemical composition and hardness of water wall tubing weld overlaid with Inconel 625. The analysis comprised studies in a light and electron microscopy scale that included the evaluation of weld overlays microstructure and microsegregation of alloying elements across the overlay and base metal interface. The particular attention was turned to the distribution of the main element content (Fe, Ni, Mo, Nb, Cr) in the base metal fusion zone as well as in the weld overlay itself. It was shown that the solidification process resulted in significant segregation in alloying elements giving rise to the substantial differences in chemical composition between dendrite cores and interdendritic spaces. It is believed that the microsegregation together with precipitation of secondary phases may contribute to the deterioration of corrosion resistance and overall mechanical properties of weld overlay including ductility and fracture toughness.
Ni-base alloys, like Inconel 625, exhibit a high temperature corrosion and oxidation resistance. For this reason, these alloys are typically used as a one of the most important coating material and can be applied in a different environments and elements of devices having various applications. In this work, Inconel 625 was deposited onto a carbon steel P235GH by Cold Metal Transfer method. Due to the segregation of Ni, Cr, Nb and Mo elements the Inconel 625 weld overlays cladded on boiler pipes P235GH obtained the dendritic structure, with the formation of a second phases at the end of solidification. The presence of γ (with high dislocation density), the Laves and (Nb,Ti)C phases was revealed by means of TEM examinations. The multipoint EDS analysis confirmed the presence of low Fe concentration in the Inconel 625 alloy coatings. The concentration profiles of Ni, Cr, Mo and Nb performed across the dendritic structure showed segregation of these elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.