This paper overviews the application of multivariate curve resolution (optimized by alternating least squares) to spectroscopic data acquired by monitoring chemical reactions and other processes. The goals of the resolution methods and the principles for understanding their applications are described. Some of the problems arising from these evolving systems and the limitations of the multivariate curve resolution methods are also discussed. This article reviews most of the applications of multivariate curve resolution applied to reacting systems published between January 2000 and June 2007. Some basic papers dated before 2000 have also been included.
Bis(m-aminophenyl)methylphosphine oxide based benzoxazine (Bz-BAMPO) was obtained using a three-step synthetic method from the aromatic diamine and 2-hydroxybenzaldehyde as starting materials. The structure and purity of the monomer was confirmed by elemental analysis, FTIR, 1 H NMR, 13 C NMR and 31 P NMR spectra. The curing kinetics of Bz-BAMPO was investigated by nonisothermal differential scanning calorimetry (DSC) at different heating rates and by FTIR spectroscopy. The isoconversional method was used to evaluate the dependence of the effective activation energy on the extent of conversion. The evolving factor analysis (EFA) method was applied to the spectroscopic FTIR data obtained in monitoring benzoxazine homopolymerizations. V
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.