With the goal of investigating the degree to which the mid-infrared emission traces the star formation rate (SFR), we analyze Spitzer 8 µm and 24 µm
This is the second of two papers reporting results from a program to determine the Hubble constant to ∼ 5% precision from a refurbished distance ladder based on extensive use of differential measurements. Here we report observations of 240 Cepheid variables obtained with the Near Infrared Camera and Multi-Object Spectrometer (NIC-MOS) Camera 2 through the F 160W filter on the Hubble Space Telescope (HST). The Cepheids are distributed across six recent hosts of Type Ia supernovae (SNe Ia) and the "maser galaxy" NGC 4258, allowing us to directly calibrate the peak luminosities of the SNe Ia from the precise, geometric distance measurements provided by the masers. New features of our measurement include the use of the same instrument for all Cepheid measurements across the distance ladder and homogeneity of the Cepheid periods and metallicities thus necessitating only a differential measurement of Cepheid fluxes and reducing the largest systematic uncertainties in the determination of the fiducial SN Ia luminosity. In addition, the NICMOS measurements reduce the effects of differential extinction in the host galaxies by a factor of ∼5 over past optical data. Combined with a greatly expanded of 240 SNe Ia at z < 0.1 which define their magnitude-redshift relation, we find H 0 =74.2 ± 3.6 km s −1 Mpc −1 , a 4.8% uncertainty including both statistical and systematic errors. To independently test the maser calibration, we use the ten individual parallax measurements of Galactic Cepheids obtained with the HST Fine -2 -Guidance Sensor and find similar results. We show that the factor of 2.2 improvement in the precision of H 0 is a significant aid to the determination of the equation-of-state parameter of dark energy, w = P/(ρc 2 ). Combined with the Wilkinson Microwave Anisotropy Probe 5-year measurement of Ω M h 2 , we find w = −1.12 ± 0.12 independent of any information from high-redshift SNe Ia or baryon acoustic oscillations (BAO). This result is also consistent with analyses based on the combination of high-redshift SNe Ia and BAO. The constraints on w(z) now including high-redshift SNe Ia and BAO are consistent with a cosmological constant and are improved by a factor of 3 due to the refinement in H 0 alone. We show that future improvements in the measurement of H 0 are likely and should further contribute to multi-technique studies of dark energy.
This paper presents the Hubble Ultra Deep Field (HUDF), a one million second exposure of an 11 square minute-of-arc region in the southern sky with the Hubble Space Telescope. The exposure time was divided among four filters, F435W (B435), F606W (V606), F775W (i775), and F850LP (z850), to give approximately uniform limiting magnitudes mAB~29 for point sources. The image contains at least 10,000 objects presented here as a catalog. Few if any galaxies at redshifts greater than ~4 resemble present day spiral or elliptical galaxies. Using the Lyman break dropout method, we find 504 B-dropouts, 204 V-dropouts, and 54 i-dropouts. Using these samples that are at different redshifts but derived from the same data, we find no evidence for a change in the characteristic luminosity of galaxies but some evidence for a decrease in their number densities between redshifts of 4 and 7. The ultraviolet luminosity density of these samples is dominated by galaxies fainter than the characteristic luminosity, and the HUDF reveals considerably more luminosity than shallower surveys. The apparent ultraviolet luminosity density of galaxies appears to decrease from redshifts of a few to redshifts greater than 6. The highest redshift samples show that star formation was already vigorous at the earliest epochs that galaxies have been observed, less than one billion years after the Big Bang.Comment: 44 pages, 18 figures, to appear in the Astronomical Journal October 200
Far ultraviolet to far infrared images of the nearby galaxy NGC 5194 (M51a), from a combination of space-based (Spitzer, GALEX, and Hubble Space Tele-1 Based on observations obtained with the Spitzer Space Telescope and with GALEX.
The ultraviolet-to-radio continuum spectral energy distributions are presented for all 75 galaxies in the Spitzer Infrared Nearby Galaxies Survey (SINGS). A principal component analysis of the sample shows that most of the sample's spectral variations stem from two underlying components, one representative of a galaxy with a low infrared-toultraviolet ratio and one representative of a galaxy with a high infrared-to-ultraviolet ratio. The influence of several parameters on the infrared-to-ultraviolet ratio is studied (e.g., optical morphology, disk inclination, far-infrared color, ultraviolet spectral slope, and star formation history). Consistent with our understanding of normal star-forming galaxies, the SINGS sample of galaxies in comparison to more actively star-forming galaxies exhibits a larger dispersion in the infrared-to-ultraviolet versus ultraviolet spectral slope correlation. Early-type galaxies, exhibiting low star formation rates and high optical surface brightnesses, have the most discrepant infrared-to-ultraviolet correlation. These results suggest that the star formation history may be the dominant regulator of the broadband spectral variations between galaxies. Finally, a new discovery shows that the 24 m morphology can be a useful tool for parameterizing the global dust temperature and ultraviolet extinction in nearby galaxies. The dust emission in dwarf /irregular galaxies is clumpy and warm accompanied by low ultraviolet extinction, while in spiral galaxies there is typically a much larger diffuse component of cooler dust and average ultraviolet extinction. For galaxies with nuclear 24 m emission, the dust temperature and ultraviolet extinction are relatively high compared to disk galaxies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.