We have discovered 16 Type Ia supernovae (SNe Ia) with the Hubble Space Telescope (HST) and have used them to provide the first conclusive evidence for cosmic deceleration that preceded the current epoch of cosmic acceleration. These objects, discovered during the course of the GOODS ACS Treasury program, include 6 of the 7 highest-redshift SNe Ia known, all at z > 1.25, and populate the Hubble diagram in unexplored territory. The luminosity distances to these objects, and to 170 previously reported SNe Ia, have been determined using empirical relations between light-curve shape and luminosity. A purely kinematic interpretation of the SN Ia sample provides evidence at the > 99% confidence level for a transition from deceleration to acceleration or similarly, strong evidence for a cosmic jerk. Using a simple model of the -2expansion history, the transition between the two epochs is constrained to be at z = 0.46 ± 0.13. The data are consistent with the cosmic concordance model of Ω M ≈ 0.3, Ω Λ ≈ 0.7 (χ 2 dof = 1.06), and are inconsistent with a simple model of evolution or dust as an alternative to dark energy. For a flat Universe with a cosmological constant, we measure Ω M = 0.29± 0.05 0.03 (equivalently, Ω Λ = 0.71). When combined with external flat-Universe constraints including the cosmic microwave background and large-scale structure, we find w = −1.02± 0.13 0.19 (and w < −0.76 at the 95% confidence level) for an assumed static equation of state of dark energy, P = wρc 2 . Joint constraints on both the recent equation of state of dark energy, w 0 , and its time evolution, dw/dz, are a factor of ∼ 8 more precise than its first estimate and twice as precise as those without the SNe Ia discovered with HST. Our constraints are consistent with the static nature of and value of w expected for a cosmological constant (i.e., w 0 = −1.0, dw/dz = 0), and are inconsistent with very rapid evolution of dark energy. We address consequences of evolving dark energy for the fate of the Universe.
We use the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) to reduce the uncertainty in the local value of the Hubble constant from 3.3% to 2.4%. The bulk of this improvement comes from new near-infrared (NIR) observations of Cepheid variables in 11 host galaxies of recent type Ia supernovae (SNeIa), more than doubling the sample of reliable SNeIa having a Cepheid-calibrated distance to a total of 19; these in turn leverage the magnituderedshift relation based on ∼300 SNeIa at z<0.15. All 19 hosts as well as the megamaser system NGC 4258 have been observed with WFC3 in the optical and NIR, thus nullifying cross-instrument zeropoint errors in the relative distance estimates from Cepheids. Other noteworthy improvements include a 33% reduction in the systematic uncertainty in the maser distance to NGC 4258, a larger sample of Cepheids in the Large Magellanic Cloud (LMC), a more robust distance to the LMC based on late-type detached eclipsing binaries (DEBs), HST observations of Cepheids in M31, and new HST-based trigonometric parallaxes for Milky Way (MW) Cepheids. We consider four geometric distance calibrations of Cepheids: (i) megamasers in NGC 4258, (ii) 8 DEBs in the LMC, (iii) 15 MW Cepheids with parallaxes measured with HST/FGS, HST/WFC3 spatial scanning and/or Hipparcos, and (iv) 2 DEBs in M31. The Hubble constant from each is 72.25±2.51, 72.04±2.67, 76.18±2.37, and 74.50±3.27 km s −1 Mpc −1 , respectively. Our best estimate of H 0 =73.24±1.74 km s −1 Mpc −1 combines the anchors NGC 4258, MW, and LMC, yielding a 2.4% determination (all quoted uncertainties include fully propagated statistical and systematic components). This value is 3.4σ higher than 66.93±0.62 km s −1 Mpc −1 predicted by ΛCDM with 3 neutrino flavors having a mass of 0.06eV and the new Planck data, but the discrepancy reduces to 2.1σ relative to the prediction of 69.3±0.7 km s −1 Mpc −1 based on the comparably precise combination of WMAP+ACT+SPT+BAO observations, suggesting that systematic uncertainties in CMB radiation measurements may play a role in the tension. If we take the conflict between Planck high-redshift measurements and our local determination of H 0 at face value, one plausible explanation could involve an additional source of dark radiation in the early universe in the range of ΔN eff ≈0.4-1. We anticipate further significant improvements in H 0 from upcoming parallax measurements of long-period MW Cepheids.
We present an improved determination of the Hubble constant from Hubble Space Telescope (HST) observations of 70 long-period Cepheids in the Large Magellanic Cloud. These were obtained with the same WFC3 photometric system used to measure extragalactic Cepheids in the hosts of Type Ia supernovae. Gyroscopic control of HST was employed to reduce overheads while collecting a large sample of widely-separated Cepheids. The Cepheid Period-Luminosity relation provides a zeropoint-independent link with 0.4% precision between the new 1.2% geometric distance to the LMC from Detached Eclipsing Binaries (DEBs) measured by Pietrzyński et al. (2019) and the luminosity of SNe Ia. Measurements and analysis of the LMC Cepheids were completed prior to knowledge of the new DEB LMC distance. Combined with a refined calibration of the count-rate linearity of WFC3-IR with 0.1% precision (Riess et al. 2019), these three improved elements together reduce the overall uncertainty in the geometric calibration of the Cepheid distance ladder based on the LMC from 2.5% to 1.3%. Using only the LMC DEBs to calibrate the ladder we find H 0 =74.22 ± 1.82 km s −1 Mpc −1 including systematic uncertainties, 3% higher than before for this particular anchor. Combining the LMC DEBs, masers in NGC 4258 and Milky Way parallaxes yields our best estimate: H 0 = 74.03 ± 1.42 km s −1 Mpc −1 , including systematics, an uncertainty of 1.91% -15% lower than our best previous result. Removing any one of these anchors changes H 0 by less than 0.7%. The difference between H 0 measured locally and the value inferred from Planck CMB and ΛCDM is 6.6±1.5 km s −1 Mpc −1 or 4.4 σ (P=99.999% for Gaussian errors) in significance, raising the discrepancy beyond a plausible level of chance. We summarize independent tests which show this discrepancy is not attributable to an error in any one source or measurement, increasing the odds that it results from a cosmological feature beyond ΛCDM.
The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, over the approximate redshift (z) range 8-1.5. It will image >250,000 distant galaxies using three separate cameras on the Hubble Space Telescope, from the mid-ultraviolet to the near-infrared, and will find and measure Type Ia supernovae at z > 1.5 to test their accuracy as standardizable candles for cosmology. Five premier multi-wavelength sky regions are selected, each with extensive ancillary data. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to a stellar mass of 10 9 M to z ≈ 2, reaching the knee of the ultraviolet luminosity function of galaxies to z ≈ 8. The survey covers approximately 800 arcmin 2 and is divided into two parts. The CANDELS/Deep survey (5σ point-source limit H = 27.7 mag) covers ∼125 arcmin 2 within Great Observatories Origins Deep Survey (GOODS)-N and GOODS-S. The CANDELS/Wide survey includes GOODS and three additional fields (Extended Groth Strip, COSMOS, and Ultra-deep Survey) and covers the full area to a 5σ pointsource limit of H 27.0 mag. Together with the Hubble Ultra Deep Fields, the strategy creates a three-tiered "wedding-cake" approach that has proven efficient for extragalactic surveys. Data from the survey are nonproprietary and are useful for a wide variety of science investigations. In this paper, we describe the basic motivations for the survey, the CANDELS team science goals and the resulting observational requirements, the field selection and geometry, and the observing design. The Hubble data processing and products are described in a companion paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.