Tumor necrosis factor (TNF)-alpha is postulated to play a major role in the pathogenesis of obesity-linked insulin resistance, probably resulting from an interaction with insulin signaling pathways. This cross talk has now been investigated in human adipocytes at the level of phosphatidylinositol (PI) 3-kinase, and the TNF receptors (TNFRs) mediating these processes have been identified. Equilibrium binding studies using human adipocytes from mammary tissue indicated the presence of two populations of TNFR with apparent affinity constants of 13 pmol/l and 1.6 nmol/l, respectively. Interaction of TNF-alpha with insulin signaling was determined by quantification of insulin receptor substrate (IRS)-1-associated PI 3-kinase activity. Under control conditions, PI 3-kinase was activated about 10-fold in response to insulin (10[-7] mol/l, 5 min). Preincubation of adipocytes with 5 nmol/l TNF-alpha for 15 min resulted in a 60-70% reduction of insulin action, reaching a stable inhibition (40%) after longer incubation with the cytokine. The inhibitory action of TNF-alpha was dose-dependent, already detectable at 10 pmol/l, and was correlated to inhibition of tyrosine phosphorylation of IRS-1 with an unaltered autophosphorylation of the insulin receptor beta-subunit. The modulation of insulin signaling by TNF-alpha was found to be paralleled by a comparable inhibition of insulin-stimulated glucose transport. An agonistic TNFR1 antibody completely mimicked the inhibitory action of TNF-alpha on insulin signaling, whereas at 100 pmol/l TNF-alpha, a nonagonistic p80 TNFR antibody, was shown to ameliorate the inhibitory action of the cytokine. These findings indicate that in human adipocytes, low concentrations of TNF-alpha induce a rapid inhibition of insulin signaling at the level of PI 3-kinase. We suggest that under these conditions, the p80 TNFR is essential for initiating the intracellular cross talk that involves signaling by the p60 TNFR.
Red blood cells (RBCs) influence rheology, and release ADP, ATP, and nitric oxide, suggesting a role for RBCs in hemostasis and thrombosis. Here, we provide evidence for a significant contribution of RBCs to thrombus formation. Anemic mice showed enhanced occlusion times upon injury of the carotid artery. A small population of RBCs was located to platelet thrombi and enhanced platelet activation by a direct cell contact via the FasL/FasR (CD95) pathway known to induce apoptosis. Activation of platelets in the presence of RBCs led to platelet FasL exposure that activated FasR on RBCs responsible for externalization of phosphatidylserine (PS) on the RBC membrane. Inhibition or genetic deletion of either FasL or FasR resulted in reduced PS exposure of RBCs and platelets, decreased thrombin generation, and reduced thrombus formation in vitro and protection against arterial thrombosis in vivo. Direct cell contacts between platelets and RBCs via FasL/FasR were shown after ligation of the inferior vena cava (IVC) and in surgical specimens of patients after thrombectomy. In a flow restriction model of the IVC, reduced thrombus formation was observed in FasL-/- mice. Taken together, our data reveal a significant contribution of RBCs to thrombosis by the FasL/FasR pathway.
Freshly isolated and primary cultured adult rat cardiomyocytes were used to elucidate the mechanism of action of the new oral antidiabetic agent (+/-)-5-[4-(6-hydroxy-2, 5, 7, 8-tetramethyl-chroman-2-yl-methoxy)benzyl]-2,4-thiazolidinedione (troglitazone) on the heart. Interaction with protein kinase C (PKC) and regulation of glucose transport were evaluated as possible sites of drug action. Acute treatment (30 min) of cardiomyocytes with troglitazone did not affect the phorbolester-induced membrane association of PKC-delta and PKC-epsilon, which represent the major isoforms present in these cells. However, under these conditions the phorbolester-mediated increase in membrane associated PKC activity was inhibited by 43 +/- 4% (n = 4) without affecting the basal distribution of PKC activity. In contrast to these findings, troglitazone had no acute effect on basal or insulin-stimulated glucose transport in freshly isolated cardiomyocytes; even after 120 min treatment an unaltered release of lactate was determine in the presence of the drug. After 20 h in serum-free culture troglitazone induced a dose-dependent increase in 2-deoxyglucose uptake reaching a 40-fold stimulation at 5 mumol/l. This was paralleled by a dose-dependent increase of glucose transporter-1 (GLUT1) and GLUT4 protein expression to 320 +/- 80 and 156 +/- 15% of control, respectively. In addition, chronic exposure to troglitazone increased the GLUT4 abundance in a plasma membrane fraction about twofold. These data show that troglitazone exerts multiple effects on cardiomyocytes involving inhibition of PKC and regulation of glucose transporter expression and distribution. We suggest that an increased glucose supply may be beneficial for the diabetic heart and that modulation of PKC-activity could be relevant for improving insulin action in muscle tissue.
OBJECTIVE: In differentiating human preadipocytes glucose uptake in the presence of insulin is a prerequisite for lipid accumulation. The aim of this study was to characterize the insulin-regulated glucose transport system during and after differentiation. DESIGN AND METHODS: Human adipocyte precursor cells kept in primary culture were allowed to differentiate into fat cells under serum-free hormone-supplemented conditions. 2-Deoxy-glucose uptake was measured as a functional parameter of the glucose transport system, the amount of GLUT1 and GLUT4 protein was determined by Western blotting. RESULTS: In the undifferentiated state, cells did not increase 2-deoxy-glucose uptake in response to insulin. On day 16, when cells have acquired the adipocyte phenotype, there was a 3±4-fold stimulation of glucose transport by insulin compared to basal rates, whereas basal glucose uptake was dramatically diminished. Measurement of GLUT4 protein in cell extracts, showed a marked increase in the amount of this insulin-regulated transporter isoform during the differentiation period. On average, the amount of GLUT4 was 16.7-fold greater after than before differentiation. In contrast, the amount of GLUT1 protein decreased during differentiation to almost undetectable levels on day 16. When newly developed adipocytes were maintained in culture for another 14 d, the stimulation of glucose uptake and the amount of GLUT4 remained stable. CONCLUSION: Differentiating human fat cells in primary culture develops an insulin-responsive glucose transport system which exhibits a high stability, thereby providing a valuable model for long-term studies of glucose transport and GLUT4 expression in human adipocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.