Seasonal influenza is a prevalent and serious annual illness resulting in widespread morbidity and economic disruption throughout the population; the elderly and immunocompromised are particularly vulnerable to serious sequelae and mortality. The changing demographics worldwide to an aging society have important implications for public health policy and pharmaceutical innovations. For instance, primary prevention via immunization is effective in reducing the burden of influenza illness among the elderly. However, the elderly may be insufficiently protected by vaccination due to the immunosenescence which accompanies aging. In addition, vaccine hesitancy among the younger populations increases the likelihood of circulating infectious diseases, and thus concomitant exposure. While it is clear that the development of more immunogenic vaccines is an imperative and worthy endeavor, clinical trials continue to demonstrate that the current influenza vaccine formulation remains highly effective in reducing morbidity and mortality when well matched to circulating strains.
Phylogenetic analysis of 19 complete VZV genomic sequences resolves wild-type strains into 5 genotypes (E1, E2, J, M1, and M2). Complete sequences for M3 and M4 strains are unavailable, but targeted analyses of representative strains suggest they are stable, circulating VZV genotypes. Sequence analysis of VZV isolates identified both shared and specific markers for every genotype and validated a unified VZV genotyping strategy. Despite high genotype diversity no evidence for intra-genotypic recombination was observed. Five of seven VZV genotypes were reliably discriminated using only four single nucleotide polymorphisms (SNP) present in ORF22, and the E1 and E2 genotypes were resolved using SNP located in ORF21, ORF22 or ORF50. Sequence analysis of 342 clinical varicella and zoster specimens from 18 European countries identified the following distribution of VZV genotypes: E1, 221 (65%); E2, 87 (25%); M1, 20 (6%); M2, 3 (1%); M4, 11 (3%). No M3 or J strains were observed.
SUMMARYAnthrax, an uncommon disease in humans, is caused by a large bacterium, Bacillus anthracis. The risk of inhalation infection is the main indication for anthrax vaccination. Pre-exposure vaccination is provided by an acellular vaccine (anthrax vaccine adsorbed or AVA), which contains anthrax toxin elements and results in protective immunity after 3 to 6 doses. Anthrax vaccine precipitated (AVP) is administered at primovaccination in 3 doses with a booster dose after 6 months. To evoke and maintain protective immunity, it is necessary to administer a booster dose once at 12 months. In Russia, live spore vaccine (STI) has been used in a two-dose schedule. Current anthrax vaccines show considerable local and general reactogenicity (erythema, induration, soreness, fever). Serious adverse reactions occur in about 1% of vaccinations. New second-generation vaccines in current research programs include recombinant live vaccines and recombinant sub-unit vaccines.
The air does contains microbial agents originally coming from the soil, water, plants or animals, including men. Temperature, light and humidity are the basic factors which has influence of microbial survival and abundance. Different microorganisms travel by aerial transmission and are involved in serious processes causing pneumonia and other diseases. In our study we decided to investigate microbial load in air at the Transplant Intensive Care Unit of the University Hospital of Hradec Králové, Czech republic for two years period. Air samples were taken from the patient's breathing zone in the single rooms. Air was sampled with Biotest RCS Plus air sampler and material collected on the Total Count strips prepared with Tryptic Soy Agar. The majority of air samples (54.2%) had microbial air load ≤ 100 CFU.m-3. Very low microbial air concentration from 15 to 30 CFU.m-3 was detected in the rooms before admission of new patients. Higher concentration was detected when medical staff was present in the room and investigation or treatment was carried out. The majority of microbial findings in the air were Gram-positive cocci (coagulase-negative staphylococci, Micrococcus spp., Sarcina spp.). Findings of Gram-negative stems were sporadic (Pseudomonas aeruginosa) as well as incidence of microscopic fungi (Cladosporium spp., Penicillium spp.).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.