Abstract. This study assesses in detail the effects of heterogeneous chemistry on the particle surface and gas-phase composition by modeling the reversible co-adsorption of O 3 , NO 2 , and H 2 O on soot coated with benzo[a]pyrene (BaP) for an urban plume scenario over a period of five days. By coupling the Pöschl-Rudich-Ammann (PRA) kinetic framework for aerosols ) to a box model version of the gas phase mechanism RADM2, we are able to track individual concentrations of gas-phase and surface species over the course of several days. The flux-based PRA formulation takes into account changes in the uptake kinetics due to changes in the chemical gas-phase and particle surface compositions. This dynamic uptake coefficient approach is employed for the first time in a broader atmospheric context of an urban plume scenario. Our model scenarios include one to three adsorbents and three to five coupled surface reactions. The results show a variation of the O 3 and NO 2 uptake coefficients of more than five orders of magnitude over the course of the simulation time and a decrease in the uptake coefficients in the various scenarios by more than three orders of magnitude within the first six hours. Thereafter, periodic peaks of the uptake coefficients follow the diurnal cycle of gas-phase O 3 -NO x reactions. Physisorption of water vapor reduces the half-life of the coating substance BaP by up to a factor of seven by permanently occupying ∼75% of the soot surface. Soot emissions modeled by replenishing reactive surface sites lead to maximum gas-phase O 3 depletions Correspondence to: D. A. Knopf (daniel.knopf@stonybrook.edu) of 41 ppbv and 7.8 ppbv for an hourly and six-hourly replenishment cycle, respectively. This conceptual study highlights the interdependence of co-adsorbing species and their nonlinear gas-phase feedback. It yields further insight into the atmospheric importance of the chemical oxidation of particles and emphasizes the necessity to implement detailed heterogeneous kinetics in future modeling studies.
Abstract. This study assesses in detail the effects of heterogeneous chemistry on the particle surface and gas-phase composition by modeling the reversible co-adsorption of O3, NO2, and H2O on soot coated with benzo[a]pyrene (BaP) for an urban plume scenario over a period of five days. By coupling the Pöschl-Rudich-Ammann (PRA) kinetic framework for aerosols (Pöschl et al., 2007) to a box model version of the gas phase mechanism RADM2, we are able to track individual concentrations of gas-phase and surface species over the course of several days. The flux-based PRA formulation takes into account changes in the uptake kinetics due to changes in the chemical gas-phase and particle surface compositions. This dynamic uptake coefficient approach is employed for the first time in a broader atmospheric context of an urban plume scenario. Our model scenarios include one to three adsorbents and three to five coupled surface reactions. The results show a variation of the O3 and NO2 uptake coefficients of more than five orders of magnitude over the course of simulation time and a decrease in the uptake coefficients in the various scenarios by more than three orders of magnitude within the first six hours. Thereafter, periodic peaks of the uptake coefficients follow the diurnal cycle of gas-phase O3-NOx reactions. Physisorption of water vapor delays the half-life of the coating substance BaP by up to a factor of seven by permanently occupying ~75% of the soot surface. Soot emissions modeled by replenishing reactive surface sites lead to maximum gas-phase O3 depletions of 41 ppbv for an hourly and 7.8 ppbv for a six-hourly replenishment cycle. This conceptual study highlights the interdependence of co-adsorbing species and their non-linear gas-phase feedback. It yields further insight into the atmospheric importance of the chemical oxidation of particles and guides future modeling and experimental investigations of the heterogeneous chemistry and chemical aging of aerosols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.