Technology evaluation in the electronics field leads to the great development of Wireless Sensor Networks (WSN) for a variety of applications. The sensor nodes are deployed in hazardous environments, and they are operated by isolated battery sources. Network connectivity is purely based on power availability, which impacts the network lifetime. Hence, power must be used wisely to prolong the network lifetime. The sensor nodes that fail due to power have to detect quickly to maintain the network. In a WSN, classifiers are used to detect the faults for checking the data generated by the sensor nodes. In this paper, six classifiers such as Support Vector Machine, Convolutional Neural Network, Multilayer Perceptron, Stochastic Gradient Descent, Random Forest and Probabilistic Neural Network have been taken for analysis. Six different faults (Offset fault, Gain fault, Stuck-at fault, Out of Bounds, Spike fault and Data loss) are injected in the data generated by the sensor nodes. The faulty data are checked by the classifiers. The simulation results show that the Random Forest detected more faults and it also outperformed all other classifiers in that category.
Text mining, also known as text analysis, is the process of converting unstructured text data into meaningful and functional information. Text mining uses different AI technologies to automate data and generate valuable insights, allowing enterprises to make data-based decisions. Text mining enables the user to extract important content from text data sets. Text analysis encourages machine learning ability for research areas such as medical and pharmaceutical innovation fields. Apart from this, text analysis converts inaccessible data into a structured format, which can be used for further analysis. Text analysis emphasizes facts and relationships from large data sets. This information is extracted and converted into structured data for visualization, analysis, and integration as structured data and refines the information using machine-learning methods. Like most things related to Natural Language Processing, text mining can seem like a difficult concept to understand. But the fact is, it does not have to be. This research article will go through the basics of text mining, clarify its different methods and techniques, and make it easier to understand how it works. We implemented Latent Dirichlet Allocation techniques for mining the data from the data set; it works properly and will be in future development data mining techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.