Gearbox is one of the vital components in aircraft engines. If any small damage to gearbox, it can cause the breakdown of aircraft engine. Thus it is significant to study fault diagnosis in gearbox system. In this paper, two deep learning models (Long short term memory (LSTM) and Bi-directional long short term memory (BLSTM)) are proposed to classify the condition of gearbox into good or bad. These models are applied on aircraft gearbox vibration data in both time and frequency domain. A publicly available aircraft gearbox vibration dataset is used to evaluate the performance of proposed models. The results proved that accuracy achieved by LSTM and BLSTM are highly reliable and applicable in health monitoring of aircraft gearbox system in time domain as compared to frequency domain. Also, to show the superiority of proposed models for aircraft gearbox fault diagnosis, performance is compared with classical machine learning models.
The gearbox is one of the critical components of a wind turbine. Proactive maintenance of wind turbine gearboxes is crucial to decrease maintenance and operational costs and the long downtime of the complete system. As the gearbox is a significant part of the wind turbine, a fault in the gearbox leads to the breakdown of the wind turbine system. Hence, it is important to study and analyze the faults in wind turbine gearbox systems. In this article, a neural network-based model, a Bidirectional Long Short-Term Memory (BLSTM) fused with an autoencoder is intended to categorize the condition of the gearbox into good or bad (broken tooth) condition. Feature learning and reduction are achieved extensively through the autoencoder. This improves the performance of the BLSTM model regarding time complexity and classification accuracy. This model has been applied with time series vibration data of the gearbox in a wind turbine system. The suggested model's performance is analyzed using an openly available wind turbine gearbox vibration dataset. The result showed that BLSTM accuracy with an under-complete autoencoder is highly robust and appropriate for the health monitoring of wind turbine gearbox systems using time series data. Also, in order to illustrate the advantage of the projected model for fault analysis and diagnosis in wind turbine gearbox, the throughput or time complexity of training and testing of the split dataset is compared with the conventional BLSTM model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.