Although natural fiber-based composite materials attract with their special features like low specific weight, biodegradability and easy processing, these fibers in combination with artificial fibers show interesting properties and are suitable for certain engineering applications. Such engineered biocomposites are needed to meet the needs of users of construction and commodity products which will simultaneously maximize the sustainability of natural resources. Various researchers researched to develop and characterize such materials. This paper throws a light on recent trends, developments, advancements and applications of hybrid composite materials.
Inconel 800H has got wide applications due to its resistance to high temperature, corrosion. Because of its poor machinability to process it, among nontraditional processes abrasive water jet machining is commonly used. Abrasive Water Jet Machining (AWJM) of Inconel 800H has commercial significance due to its good machining characteristics. In the present paper an attempt has been made to optimise machining parameters employed in Abrasive Jet Machining of Inconel 800H using Taguchi method. The approach used is based on the analysis of variance and signal to noise ratio (SN Ratio) to optimize the AWJM process parameters for effective Material Removal Rate (MRR) and Surface Roughness (SR). Important AWJM machining parameters such as water pressure, focussing tube size, traverse speed & abrasive flow rate were predicted for optimised MRR and SR. It was confirmed that determined optimal combination of AWJM process parameters satisfy the real need for machining of Inconel 800H in actual practice.
Nickel-based alloys are finding a wide range of applications due to their superior properties of maintaining hardness at elevated temperatures, low thermal conductivity and resistance to corrosion. These materials are used in aircraft, power-generation turbines, rocket engines, automobiles, nuclear power and chemical processing plants. Machining of such alloys is difficult using conventional processes. Wire-cut electrical discharge machining is one of the advanced machining processes, which can cut any electrically conductive material irrespective of its hardness. One of the major disadvantages of this process is formation of recast layer as it affects the properties of the machined surfaces. In this study, experimental investigation has been carried out to study the effect of wire-cut electrical discharge machining process parameters on micro-hardness, surface roughness and recast layer while machining Inconel-690 material. Interestingly, hardness of the machined surface was found to be lower than that of the bulk material. The micro-hardness and recast layer thickness are inversely related to the variation of process parameters. Recast layer thickness, surface roughness and hardness of the wire-cut electrical discharge machined surfaces of Inconel-690 are found to be in the range of 10-50 mm, 0.276-3.253 mm and 122-171 HV, respectively, for different conditions. The research findings and the data generated for the first time on hardness and recast layer thickness for Inconel-690 will be useful to the industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.