The fate of detergent surfactants in the sewer can be studied both in laboratory tests and in field experiments. The laboratory studies can be used to determine the rate of disappearance of a test molecule as a function of residence time and estimate its half-life in a given habitat. In addition, important information can be obtained on the mechanism of degradation. Field studies can determine the actual environmental concentrations of surfactants in raw sewage which can then be compared with the expected concentration based on consumption volumes. The difference between the measured and predicted concentration provides an estimate for the disappearance of the test chemical during its travel in the sewer and confirms the results of the laboratory tests. This paper focuses on the fate of a number of important representative anionic, nonionic and cationic surfactants, in the sewer. The results of laboratory die-away studies showed that, in general, the half-life for disappearance in the sewer was in the order of hours for Fatty Alcohol Ethoxylate (AE), Fatty Alcohol Ethoxy Sulphate (AES) and Di-Ethyl-Ester Di-methyl-Ammonium Chloride (DEEDMAC). These laboratory findings for AES were confirmed by monitoring actual raw sewage reaching municipal sewage treatment plants. In addition, a field study demonstrated that the concentration of glucose amides (GA) is considerably reduced during its travel in the sewer. These complementary laboratory and field studies provide key information for the safety assessment of surfactants. They demonstrate that the concentration of surfactants can be significantly reduced in the sewer resulting in a rapid reduction of the environmental loading, which is particularly important in environmental situations where inadequate or no sewage treatment exists.
Detergents are high-volume consumer products which are discharged directly into domestic sewage after their use. They are removed in the treatment of domestic sewage and via instream removal mechanisms in surface waters. Important removal mechanisms are biological degradation, adsorption to sediments, etc. The degree of removal mainly depends on the physico-chemical and environmental properties of the chemical and on the type of sewage treatment. The continuous removal processes, combined with the continuous discharge to surface waters via treated or untreated sewage effluents, results in the presence of detergent chemicals in surface waters, where they can further biodegrade. Detergent chemicals can thus, ultimately, enter the marine environment. Data are presented on the discharged amounts of detergent ingredients, such as surfactants and phosphates, to surface waters and to the North Sea. Furthermore, the fate and effects of a typical surfactant in the marine and estuarine environment are described. Monitoring data for one of the major anionic surfactants, Linear Alkylbenzene Sulphonate (LAS), are presented. A comparison of the measured concentrations of LAS with the concentrations, predicted on the basis of a measured dilution of the river water with sea water, shows that this surfactant continues to biodegrade under marine conditions.
In 2013, the European Commission launched the Environmental Footprint Rules pilot phase. This initiative aims at setting specific rules for life cycle assessment (LCA: raw material sourcing, production, logistics, use, and disposal phase) studies within 1 product category, called product environmental footprint category rules (PEFCR), and for organizations, called organizational environmental footprint sector rules (OEFSR). Such specific rules for measuring environmental performance throughout the life cycle should facilitate the comparability between LCA studies and provide principles for communicating environmental performance, such as transparency, reliability, completeness, and clarity. Cosmetics Europe, the association representing the cosmetics industry in the European Union, completed a voluntary study into the development of PEFCR for shampoo, generally following the guidelines and methodology developed by the European Commission for its own pilot projects. The study assessed the feasibility and relevance of establishing PEFCR for shampoo. Specifically, the study defines a large number of modeling assumptions and default values relevant for shampoo (e.g., for the functional unit, the system boundaries, default transport distances, rinsing water volumes, temperature differences, life cycle inventory data sources) that can be modified as appropriate, according to the specificities of individual products, manufacturing companies, and countries. The results of the study may be used to support internal decision making (e.g., to identify "hotspots" with high environmental impact and opportunities for improvement) or to meet information requests from commercial partners, consumers, media, or authorities on product environmental characteristics. In addition, the shampoo study also highlighted many of the challenges and limitations of the current product environmental footprint (PEF) methodology, namely its complexity and resource intensiveness. It highlighted 2 areas where improvements are much needed: (1) data quality and availability, and (2) impact assessment methodologies and robustness. Many of the findings are applicable to other rinse-off cosmetic products, such as shower gels, liquid soaps, bath products, and hair conditioners. Integr Environ Assess Manag 2018;14:649-659. © 2018 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.